在下面python代码中加入注意力机制模型
时间: 2024-05-16 19:15:48 浏览: 156
注意力机制
5星 · 资源好评率100%
这是一个简单的示例代码,演示如何在一个Transformer模型中加入注意力机制。
首先,我们需要导入需要的库:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
```
接下来,我们定义一个Transformer模型,该模型包含了一个多头注意力机制:
```python
class TransformerModel(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_heads, dropout):
super().__init__()
self.embedding = nn.Embedding(input_size, hidden_size)
self.pos_enc = PositionalEncoding(hidden_size, dropout)
self.transformer = nn.Transformer(d_model=hidden_size, nhead=num_heads, num_encoder_layers=num_layers,
num_decoder_layers=num_layers, dim_feedforward=hidden_size*4, dropout=dropout)
self.fc = nn.Linear(hidden_size, input_size)
def forward(self, x):
x = self.embedding(x)
x = self.pos_enc(x)
output = self.transformer(x, x)
output = self.fc(output)
return output
```
我们可以看到,在这个模型中,我们首先对输入进行嵌入(embedding),然后添加位置编码(Positional Encoding)。然后,我们使用`nn.Transformer`来进行多头注意力机制的计算,最后通过一个全连接层进行输出。
下面是位置编码的实现:
```python
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
```
这个模型包含了一个包含多个头的注意力机制,具体实现如下:
```python
class MultiHeadAttention(nn.Module):
def __init__(self, hidden_size, num_heads, dropout):
super().__init__()
self.num_heads = num_heads
self.hidden_size = hidden_size
self.head_size = int(hidden_size / num_heads)
self.q_linear = nn.Linear(hidden_size, hidden_size)
self.v_linear = nn.Linear(hidden_size, hidden_size)
self.k_linear = nn.Linear(hidden_size, hidden_size)
self.dropout = nn.Dropout(p=dropout)
self.out = nn.Linear(hidden_size, hidden_size)
def forward(self, q, k, v, mask=None):
bs = q.size(0)
# Perform linear operation and split into h heads
k = self.k_linear(k).view(bs, -1, self.num_heads, self.head_size)
q = self.q_linear(q).view(bs, -1, self.num_heads, self.head_size)
v = self.v_linear(v).view(bs, -1, self.num_heads, self.head_size)
# Transpose to get dimensions bs * h * sl * d_model
k = k.transpose(1, 2)
q = q.transpose(1, 2)
v = v.transpose(1, 2)
# Calculate attention using function we will define next
scores = self.calculate_attention(q, k, v, mask)
# Concatenate heads and put through final linear layer
concat = scores.transpose(1, 2).contiguous().view(bs, -1, self.hidden_size)
output = self.out(concat)
return output
def calculate_attention(self, q, k, v, mask=None):
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_size)
if mask is not None:
mask = mask.unsqueeze(1)
scores = scores.masked_fill(mask == 0, -1e9)
scores = F.softmax(scores, dim=-1)
scores = self.dropout(scores)
output = torch.matmul(scores, v)
return output
```
在这个模型中,我们使用了三个线性层分别对输入进行处理,然后将其拆分成多个头。接着,我们使用`calculate_attention`函数计算注意力分数,并将其应用于值向量(value vector)。最后,我们将所有头的输出连接在一起,并通过一个线性层进行输出。
最后,在`TransformerModel`中调用多头注意力机制:
```python
class TransformerModel(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_heads, dropout):
super().__init__()
self.embedding = nn.Embedding(input_size, hidden_size)
self.pos_enc = PositionalEncoding(hidden_size, dropout)
self.attention = MultiHeadAttention(hidden_size, num_heads, dropout)
self.fc = nn.Linear(hidden_size, input_size)
def forward(self, x):
x = self.embedding(x)
x = self.pos_enc(x)
output = self.attention(x, x, x)
output = self.fc(output)
return output
```
在这里,我们将输入向量传递给注意力模型,并将其输出作为最终输出。
阅读全文