repartition和coalesce关系与区别
时间: 2023-06-05 11:47:57 浏览: 278
Spark理论和PySpark.pdf
repartition和coalesce都是Spark中用于重新分区的方法,但它们之间有一些区别。
repartition方法会将数据集重新分区,可以增加或减少分区数。它会进行shuffle操作,即数据会被重新洗牌,因此会有网络传输和磁盘IO的开销。repartition方法会产生新的RDD,因此会占用更多的内存空间。
coalesce方法也可以重新分区,但只能减少分区数。它不会进行shuffle操作,因此不会有网络传输和磁盘IO的开销。coalesce方法不会产生新的RDD,因此不会占用更多的内存空间。
因此,如果需要增加分区数或者进行shuffle操作,应该使用repartition方法;如果只需要减少分区数且不需要进行shuffle操作,应该使用coalesce方法。
阅读全文