transformer 时序预测
时间: 2023-09-03 12:08:27 浏览: 214
基于LSTM和Transformer模型进行时序预测python源码+文档说明+数据+模型+训练过程(高分课程设计)
5星 · 资源好评率100%
Transformer是一种用于时序预测的模型,在NeurIPS 2019的论文《Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting》中进行了详细介绍。这篇论文提出了一种改进的Attention计算方式,以适应时序数据,并引入了一种名为ConvTrans的算法来解决Transformer的拓展性问题。该论文给出了基于PyTorch的具体实现。
Transformer模型的发展历史可以追溯到其原始论文,该论文详细介绍了Transformer的细节和原理。对于深入理解Transformer及其源码解读,您可以参考一些相关论文和资料,其中包括Transformer论文链接和Informer论文链接。
总结来说,Transformer是一种用于时序预测的模型,在NeurIPS 2019论文中进行了改进,并提出了一种解决拓展性问题的算法。关于Transformer的细节和原理,您可以参考相关的论文和资料。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [【时间序列】Transformer for TimeSeries时序预测算法详解](https://blog.csdn.net/weixin_64338372/article/details/129865637)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *3* [学习笔记:基于Transformer的时间序列预测模型](https://blog.csdn.net/xxt228/article/details/128754364)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文