ubuntu20.04安装和深度学习as

时间: 2023-11-18 22:52:33 浏览: 116
好的,针对您的问题,我可以给出以下步骤: 1. 下载Ubuntu 20.04的ISO镜像文件,并将其写入U盘或DVD中。 2. 将U盘或DVD插入计算机,并启动计算机。 3. 在启动时按下F2或F12等键,进入BIOS设置,将启动顺序设置为U盘或DVD。 4. 选择“Install Ubuntu”选项,并按照提示进行安装。 5. 安装完成后,打开终端并输入以下命令以安装深度学习框架: ``` sudo apt-get update sudo apt-get install python3-dev python3-pip python3-venv python3 -m venv my_env source my_env/bin/activate pip install tensorflow keras numpy pandas matplotlib jupyter ``` 6. 安装完成后,您可以使用Jupyter Notebook等工具来编写和运行深度学习代码。
相关问题

在ubuntu20.04中安装深度学习所需软件和配置的详细教程

在Ubuntu 20.04上安装深度学习所需的软件和配置通常涉及到几个关键步骤,包括Python环境、GPU支持、库如TensorFlow和PyTorch等。以下是详细的安装教程: 1. **更新系统**: ```sh sudo apt-get update && sudo apt-get upgrade ``` 2. **安装Python和基本库**: - 安装Python 3 (如果尚未安装): ```sh sudo apt-get install python3-pip ``` - 安装pip3并设置为默认的Python包管理器: ```sh sudo apt-get install python3-setuptools ``` 3. **创建虚拟环境(推荐)**: 使用`venv`或`virtualenv`创建一个隔离的Python环境: ```sh python3 -m venv myenv source myenv/bin/activate ``` 4. **安装Conda(选装)**: Anaconda是一个强大的数据科学工具集合,可以用于管理多个环境: ```sh wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh bash Miniconda3-latest-Linux-x86_64.sh ``` 按照提示完成安装。 5. **安装必要的Python库**: - NumPy: ```sh conda install numpy ``` - TensorFlow: ```sh conda install tensorflow ``` 或者,如果你需要CPU版本: ```sh pip install tensorflow-cpu ``` 6. **安装CUDA和cuDNN** (仅对GPU支持): - 首先确保你的GPU硬件支持CUDA,然后访问NVIDIA官网下载对应版本的CUDA驱动。 - 下载cuDNN: https://developer.nvidia.com/cudnn - 配置环境变量并安装cuDNN。 7. **验证安装**: 在终端运行示例代码测试库是否工作正常,例如: ```python import tensorflow as tf print(tf.__version__) ```

Ubuntu20.04下配置深度学习环境

在Ubuntu 20.04上配置深度学习环境通常涉及安装必要的软件包、设置GPU支持以及选择一个深度学习框架。以下是基本步骤: 1. **更新系统**: ``` sudo apt update && sudo apt upgrade ``` 2. **安装依赖库**: - 使用`sudo apt install` 安装基本库,如Python、Git、CUDA、cuDNN等: ```bash sudo apt install python3 python3-pip software-properties-common git nvidia-cuda-toolkit libnvidia-dev cmake ``` 3. **添加额外的PPA(Personal Package Archive)**: - 对于CUDA和TensorFlow等特定版本,可能需要添加官方PPA,例如: ``` sudo add-apt-repository ppa:ubuntu-comput视觉-team/ppa sudo add-apt-repository ppa:tensorflow-infra/p因果图-tensorflow-lts ``` 4. **安装GPU驱动**: - 如果你是NVIDIA用户,运行: ``` sudo apt-get install nvidia-driver-<version> ``` 替换 `<version>` 为你的显卡对应的实际驱动版本。 5. **安装深度学习框架**: - TensorFlow: ```bash pip3 install tensorflow==<version> # 更改成适合的TensorFlow版本 ``` - PyTorch: ```bash pip3 install torch torchvision torchaudio -f https://download.pytorch.org/whl/torch_stable.html ``` 或者对于最新的PyTorch Nightly版: ```bash pip3 install torch-nightly -f https://download.pytorch.org/whl/nightly/cu11X/torch_nightly.html ``` 6. **验证安装**: 运行示例代码测试是否成功,比如 `python3 -c "import tensorflow as tf; print(tf.reduce_sum([1, 2, 3]))"` 或 `python3 -m torch.cuda.synchronize()`。
阅读全文

相关推荐

最新推荐

recommend-type

ubuntu20.04安装QT.pdf

ubuntu20.04安装QT 一、 安装cmake 二、 安装gcc和g++ 三、 下载QT 四、 安装QT 五、 故障解决
recommend-type

在Ubuntu20.04中安装ROS Noetic的方法

在Ubuntu 20.04中安装ROS Noetic,你需要遵循一系列步骤,确保系统的兼容性和稳定性。 首先,为了能够从ROS的官方仓库下载软件包,你需要更新你的`sources.list`文件。在终端中输入以下命令: ```bash sudo sh -c ...
recommend-type

Ubuntu 20.04 CUDA&cuDNN安装方法(图文教程)

在Ubuntu 20.04操作系统中安装CUDA和cuDNN是进行深度学习和高性能计算的重要步骤。CUDA是NVIDIA公司提供的一个并行计算平台,它允许开发者利用GPU的计算能力来加速应用程序。cuDNN(CUDA Deep Neural Network)则是...
recommend-type

Ubuntu20.04安装cuda10.1的步骤(图文教程)

至此,CUDA 10.1和cuDNN已成功安装在Ubuntu 20.04上,可以开始进行深度学习项目。记得每次新开终端时运行`source ~/.bashrc`以应用环境变量配置。现在,你的系统已经准备好进行基于CUDA的GPU加速计算,例如使用...
recommend-type

ubuntu20.04 LTS安装docker的方法步骤

主要介绍了ubuntu20.04 LTS安装docker的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

基于Python和Opencv的车牌识别系统实现

资源摘要信息:"车牌识别项目系统基于python设计" 1. 车牌识别系统概述 车牌识别系统是一种利用计算机视觉技术、图像处理技术和模式识别技术自动识别车牌信息的系统。它广泛应用于交通管理、停车场管理、高速公路收费等多个领域。该系统的核心功能包括车牌定位、车牌字符分割和车牌字符识别。 2. Python在车牌识别中的应用 Python作为一种高级编程语言,因其简洁的语法和强大的库支持,非常适合进行车牌识别系统的开发。Python在图像处理和机器学习领域有丰富的第三方库,如OpenCV、PIL等,这些库提供了大量的图像处理和模式识别的函数和类,能够大大提高车牌识别系统的开发效率和准确性。 3. OpenCV库及其在车牌识别中的应用 OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,提供了大量的图像处理和模式识别的接口。在车牌识别系统中,可以使用OpenCV进行图像预处理、边缘检测、颜色识别、特征提取以及字符分割等任务。同时,OpenCV中的机器学习模块提供了支持向量机(SVM)等分类器,可用于车牌字符的识别。 4. SVM(支持向量机)在字符识别中的应用 支持向量机(SVM)是一种二分类模型,其基本模型定义在特征空间上间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM算法的核心思想是找到一个分类超平面,使得不同类别的样本被正确分类,且距离超平面最近的样本之间的间隔(即“间隔”)最大。在车牌识别中,SVM用于字符的分类和识别,能够有效地处理手写字符和印刷字符的识别问题。 5. EasyPR在车牌识别中的应用 EasyPR是一个开源的车牌识别库,它的c++版本被广泛使用在车牌识别项目中。在Python版本的车牌识别项目中,虽然项目描述中提到了使用EasyPR的c++版本的训练样本,但实际上OpenCV的SVM在Python中被用作车牌字符识别的核心算法。 6. 版本信息 在项目中使用的软件环境信息如下: - Python版本:Python 3.7.3 - OpenCV版本:opencv*.*.*.** - Numpy版本:numpy1.16.2 - GUI库:tkinter和PIL(Pillow)5.4.1 以上版本信息对于搭建运行环境和解决可能出现的兼容性问题十分重要。 7. 毕业设计的意义 该项目对于计算机视觉和模式识别领域的初学者来说,是一个很好的实践案例。它不仅能够让学习者在实践中了解车牌识别的整个流程,而且能够锻炼学习者利用Python和OpenCV等工具解决问题的能力。此外,该项目还提供了一定量的车牌标注图片,这在数据不足的情况下尤其宝贵。 8. 文件信息 本项目是一个包含源代码的Python项目,项目代码文件位于一个名为"Python_VLPR-master"的压缩包子文件中。该文件中包含了项目的所有源代码文件,代码经过详细的注释,便于理解和学习。 9. 注意事项 尽管该项目为初学者提供了便利,但识别率受限于训练样本的数量和质量,因此在实际应用中可能存在一定的误差,特别是在处理复杂背景或模糊图片时。此外,对于中文字符的识别,第一个字符的识别误差概率较大,这也是未来可以改进和优化的方向。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

网络隔离与防火墙策略:防御网络威胁的终极指南

![网络隔离](https://www.cisco.com/c/dam/en/us/td/i/200001-300000/270001-280000/277001-278000/277760.tif/_jcr_content/renditions/277760.jpg) # 1. 网络隔离与防火墙策略概述 ## 网络隔离与防火墙的基本概念 网络隔离与防火墙是网络安全中的两个基本概念,它们都用于保护网络不受恶意攻击和非法入侵。网络隔离是通过物理或逻辑方式,将网络划分为几个互不干扰的部分,以防止攻击的蔓延和数据的泄露。防火墙则是设置在网络边界上的安全系统,它可以根据预定义的安全规则,对进出网络
recommend-type

在密码学中,对称加密和非对称加密有哪些关键区别,它们各自适用于哪些场景?

在密码学中,对称加密和非对称加密是两种主要的加密方法,它们在密钥管理、计算效率、安全性以及应用场景上有显著的不同。 参考资源链接:[数缘社区:密码学基础资源分享平台](https://wenku.csdn.net/doc/7qos28k05m?spm=1055.2569.3001.10343) 对称加密使用相同的密钥进行数据的加密和解密。这种方法的优点在于加密速度快,计算效率高,适合大量数据的实时加密。但由于加密和解密使用同一密钥,密钥的安全传输和管理就变得十分关键。常见的对称加密算法包括AES(高级加密标准)、DES(数据加密标准)、3DES(三重数据加密算法)等。它们通常适用于那些需要
recommend-type

我的代码小部件库:统计、MySQL操作与树结构功能

资源摘要信息:"leetcode用例构造-my-widgets是作者为练习、娱乐或实现某些项目功能而自行开发的一个代码小部件集合。这个集合中包含了作者使用Python语言编写的几个实用的小工具模块,每个模块都具有特定的功能和用途。以下是具体的小工具模块及其知识点的详细说明: 1. statistics_from_scratch.py 这个模块包含了一些基础的统计函数实现,包括但不限于均值、中位数、众数以及四分位距等。此外,它还实现了二项分布、正态分布和泊松分布的概率计算。作者强调了使用Python标准库(如math和collections模块)来实现这些功能,这不仅有助于巩固对统计学的理解,同时也锻炼了Python编程能力。这些统计函数的实现可能涉及到了算法设计和数学建模的知识。 2. mysql_io.py 这个模块是一个Python与MySQL数据库交互的接口,它能够自动化执行数据的导入导出任务。作者原本的目的是为了将Leetcode平台上的SQL测试用例以字典格式自动化地导入到本地MySQL数据库中,从而方便在本地测试SQL代码。这个模块中的MysqlIO类支持将MySQL表导出为pandas.DataFrame对象,也能够将pandas.DataFrame对象导入为MySQL表。这个工具的应用场景可能包括数据库管理和数据处理,其内部可能涉及到对数据库API的调用、pandas库的使用、以及数据格式的转换等编程知识点。 3. tree.py 这个模块包含了与树结构相关的一系列功能。它目前实现了二叉树节点BinaryTreeNode的构建,并且提供了从列表构建二叉树的功能。这可能涉及到数据结构和算法中的树形结构、节点遍历、树的构建和操作等。利用这些功能,开发者可以在实际项目中实现更高效的数据存储和检索机制。 以上三个模块构成了my-widgets库的核心内容,它们都以Python语言编写,并且都旨在帮助开发者在特定的编程场景中更加高效地完成任务。这些工具的开发和应用都凸显了作者通过实践提升编程技能的意图,并且强调了开源精神,即将这些工具共享给更广泛的开发者群体,以便他们也能够从中受益。 通过这些小工具的使用,开发者可以更好地理解编程在不同场景下的应用,并且通过观察和学习作者的代码实现,进一步提升自己的编码水平和问题解决能力。"