fixed和showpoint区别

时间: 2024-04-05 22:12:47 浏览: 40
fixed和showpoint都是C++中的操纵符,用于控制浮点数的输出格式。 fixed操纵符用于指定浮点数输出的小数位数,并将输出格式设置为固定点表示法。它的作用是强制使用固定的小数位数输出浮点数,即使小数位数为0也会输出。例如: ```c++ double x = 3.14159265358979323846; cout << fixed << setprecision(2) << x; // 输出3.14 ``` showpoint操纵符用于在输出浮点数时强制显示小数点和尾随的零。它的作用是在浮点数有小数位时强制显示小数点,即使小数位数为0也会输出。例如: ```c++ double x = 3.0; cout << showpoint << setprecision(2) << x; // 输出3.00 ``` 因此,fixed和showpoint的区别在于,fixed只控制小数位数的输出格式,而showpoint控制小数位数以及小数点和尾随的零的显示。
相关问题

设计Circle圆类,成员数据包含半径radius,类型为double。计算圆的面积时π的取值为3.14159。 程序的功能:首先读入n个圆的半径,然后统计所有圆的面积之和并输出。 main函数已给定,提交时只需要提交main函数外的代码部分。 #include<iostream> #include<iomanip> using namespace std; //你提交的代码在这里 int main() { cout<<fixed<<showpoint<<setprecision(5); int n,i; cin>>n; Circle *c=new Circle[n+1]; for(i=1;i<=n;i++) cin>>c[i]; for(i=0;i<=n;i++) cout<<i<<":"<<c[i]<<endl; for(i=1;i<=n;i++) c[0]=c[0]+c[i]; cout<<"total area="<<c[0].GetArea()<<endl; delete[] c; return 0; }输入3 1 2 3输出0:radius=0.00000,area=0.00000 1:radius=1.00000,area=3.14159 2:radius=2.00000,area=12.56636 3:radius=3.00000,area=28.27431 total area=43.98226请补充完整代码

``` #include<iostream> #include<iomanip> using namespace std; class Circle { private: double radius; public: Circle() { radius = 0; } friend istream& operator>>(istream& in, Circle& c); friend ostream& operator<<(ostream& out, const Circle& c); Circle operator+(const Circle& c) const { Circle res; res.radius = radius + c.radius; return res; } double GetArea() const { return 3.14159 * radius * radius; } }; istream& operator>>(istream& in, Circle& c) { in >> c.radius; return in; } ostream& operator<<(ostream& out, const Circle& c) { out << "radius=" << fixed << setprecision(5) << c.radius << ",area=" << fixed << setprecision(5) << c.GetArea(); return out; } int main() { cout << fixed << showpoint << setprecision(5); int n, i; cin >> n; Circle* c = new Circle[n + 1]; for (i = 1; i <= n; i++) cin >> c[i]; for (i = 0; i <= n; i++) cout << i << ":" << c[i] << endl; for (i = 1; i <= n; i++) c[0] = c[0] + c[i]; cout << "total area=" << c[0].GetArea() << endl; delete[] c; return 0; } ```

解释一下下面代码//lab9_1.cpp #include <fstream> #include <iostream> using namespace std; #define D(a) T << #a << endl; a ofstream T("output.out"); int main() { D(int i = 53;) D(float f = 4700113.141593;) char* s = "Is there any more?"; D(T.setf(ios::unitbuf);) D(T.setf(ios::showbase);) D(T.setf(ios::uppercase);) D(T.setf(ios::showpos);) D(T << i << endl;) D(T.setf(ios::hex, ios::basefield);) D(T << i << endl;) D(T.unsetf(ios::uppercase);) D(T.setf(ios::oct, ios::basefield);) D(T << i << endl;) D(T.unsetf(ios::showbase);) D(T.setf(ios::dec, ios::basefield);) D(T.setf(ios::left, ios::adjustfield);) D(T.fill('0');) D(T << "fill char: " << T.fill() << endl;) D(T.width(8);) T << i << endl; D(T.setf(ios::right, ios::adjustfield);) D(T.width(8);) T << i << endl; D(T.setf(ios::internal, ios::adjustfield);) D(T.width(8);) T << i << endl; D(T << i << endl;) // Without width(10) D(T.unsetf(ios::showpos);) D(T.setf(ios::showpoint);) D(T << "prec = " << T.precision() << endl;) D(T.setf(ios::scientific, ios::floatfield);) D(T << endl << f << endl;) D(T.setf(ios::fixed, ios::floatfield);) D(T << f << endl;) //D(T.setf(0, ios::floatfield);) D(T << f << endl;) D(T.precision(16);) D(T << "prec = " << T.precision() << endl;) D(T << endl << f << endl;) D(T.setf(ios::scientific, ios::floatfield);) D(T << endl << f << endl;) D(T.setf(ios::fixed, ios::floatfield);) D(T << f << endl;) //D(T.setf(0, ios::floatfield);) D(T << f << endl;) D(T.width(8);) T << s << endl; D(T.width(36);) T << s << endl; D(T.setf(ios::left, ios::adjustfield);) D(T.width(36);) T << s << endl; D(T.unsetf(ios::showpoint);) D(T.unsetf(ios::unitbuf);) }

这段代码是一个演示如何使用流操作符和流控制符来格式化输出的示例。它包括了一系列的输出语句,每个输出语句都使用流操作符 "<<" 将数据插入到输出流中,同时使用流控制符来控制输出格式。 其中,D(a) 是一个宏定义,用于将表达式 a 插入到输出流中,并在 a 前面加上 a 的文本表示。这个宏定义主要用于调试目的,可以方便地输出变量的名称和值。 在主函数中,首先定义了三个变量:一个 int 类型的变量 i,一个 float 类型的变量 f,以及一个 char* 类型的字符串 s。 接下来,使用一系列的流控制符来设置输出格式,包括设置进制、对齐方式、填充字符、精度等等。然后将变量 i 和 f 输出到输出流中,最后输出字符串 s。 需要注意的是,这段代码中还包括了一些注释掉的语句,这些语句可以用来进一步探索流操作符和流控制符的使用。

相关推荐

Q21: Which of the following is a valid user-defined output stream manipulator header? a. ostream& tab( ostream& output ) b. ostream tab( ostream output ) c. istream& tab( istream output ) d. void tab( ostream& output ) Q22: What will be output by the following statement? cout << showpoint << setprecision(4) << 11.0 << endl; a. 11 b. 11.0 c. 11.00 d. 11.000 Q23: Which of the following stream manipulators causes an outputted number’s sign to be left justified, its magnitude to be right justified and the center space to be filled with fill characters? a. left b. right c. internal d. showpos Q24: Which of the following statements restores the default fill character? a. cout.defaultFill(); b. cout.fill(); c. cout.fill( 0 ); d. cout.fill( ' ' ); Q25: When the showbase flag is set: a. The base of a number precedes it in brackets. b. Decimal numbers are not output any differently. c. "oct" or "hex" will be displayed in the output stream. d. Octal numbers can appear in one of two ways. Q26: What will be output by the following statements? double x = .0012345; cout << fixed << x << endl; cout << scientific << x << endl; a. 1.234500e-003 0.001235 b. 1.23450e-003 0.00123450 c. .001235 1.234500e-003 d. 0.00123450 1.23450e-003 Q27: Which of the following outputs does not guarantee that the uppercase flag has been set? a. All hexadecimal numbers appear in the form 0X87. b. All numbers written in scientific notation appear the form 6.45E+010. c. All text outputs appear in the form SAMPLE OUTPUT. d. All hexadecimal numbers appear in the form AF6. Q28: Which of the following is not true about bool values and how they're output with the output stream? a. The old style of representing true/false values used -1 to indicate false and 1 to indicate true. b. A bool value outputs as 0 or 1 by default. c. Stream manipulator boolalpha sets the output stream to display bool values as the strings "true" and "false". d. Both boolalpha and noboolalpha are “sticky” settings.

最新推荐

recommend-type

C++操纵符及含义、用法

3. **showpoint** 和 **noshowpoint**: - `showpoint` 强制在输出的浮点数中始终显示小数点,即使小数部分为零。 - `noshowpoint` 只有在浮点数的小数部分不为零时才会显示小数点。 4. **showpos** 和 **...
recommend-type

C++程序计算一门课的成绩

`setf(ios::fixed)`和`setf(ios::showpoint)`是用来设置输出格式的,确保浮点数以固定小数位数(这里是2位)并显示小数点。然后,程序进入一个循环,读取输入文件中的每一个字符,如果遇到数字,则使用`putback()`将...
recommend-type

Django 安装包 linux

Django 安装包 主要应用于linux
recommend-type

#-ssm-056-mysql-水稻朔源信息系统.zip

水稻朔源信息系统
recommend-type

基于springboot毕业设计成绩管理系统的设计与实现.docx

基于springboot毕业设计成绩管理系统的设计与实现.docx
recommend-type

多模态联合稀疏表示在视频目标跟踪中的应用

"该资源是一篇关于多模态联合稀疏表示在视频目标跟踪中的应用的学术论文,由段喜萍、刘家锋和唐降龙撰写,发表在中国科技论文在线。文章探讨了在复杂场景下,如何利用多模态特征提高目标跟踪的精度,提出了联合稀疏表示的方法,并在粒子滤波框架下进行了实现。实验结果显示,这种方法相比于单模态和多模态独立稀疏表示的跟踪算法,具有更高的精度。" 在计算机视觉领域,视频目标跟踪是一项关键任务,尤其在复杂的环境条件下,如何准确地定位并追踪目标是一项挑战。传统的单模态特征,如颜色、纹理或形状,可能不足以区分目标与背景,导致跟踪性能下降。针对这一问题,该论文提出了基于多模态联合稀疏表示的跟踪策略。 联合稀疏表示是一种将不同模态的特征融合在一起,以增强表示的稳定性和鲁棒性的方式。在该方法中,作者考虑到了分别对每种模态进行稀疏表示可能导致的不稳定性,以及不同模态之间的相关性。他们采用粒子滤波框架来实施这一策略,粒子滤波是一种递归的贝叶斯方法,适用于非线性、非高斯状态估计问题。 在跟踪过程中,每个粒子代表一种可能的目标状态,其多模态特征被联合稀疏表示,以促使所有模态特征产生相似的稀疏模式。通过计算粒子的各模态重建误差,可以评估每个粒子的观察概率。最终,选择观察概率最大的粒子作为当前目标状态的估计。这种方法的优势在于,它不仅结合了多模态信息,还利用稀疏表示提高了特征区分度,从而提高了跟踪精度。 实验部分对比了基于本文方法与其他基于单模态和多模态独立稀疏表示的跟踪算法,结果证实了本文方法在精度上的优越性。这表明,多模态联合稀疏表示在处理复杂场景的目标跟踪时,能有效提升跟踪效果,对于未来的研究和实际应用具有重要的参考价值。 关键词涉及的领域包括计算机视觉、目标跟踪、粒子滤波和稀疏表示,这些都是视频分析和模式识别领域的核心概念。通过深入理解和应用这些技术,可以进一步优化目标检测和跟踪算法,适应更广泛的环境和应用场景。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

文本摘要革命:神经网络如何简化新闻制作流程

![文本摘要革命:神经网络如何简化新闻制作流程](https://img-blog.csdnimg.cn/6d65ed8c20584c908173dd8132bb2ffe.png) # 1. 文本摘要与新闻制作的交汇点 在信息技术高速发展的今天,自动化新闻生成已成为可能,尤其在文本摘要领域,它将新闻制作的效率和精准度推向了新的高度。文本摘要作为信息提取和内容压缩的重要手段,对于新闻制作来说,其价值不言而喻。它不仅能快速提炼新闻要点,而且能够辅助新闻编辑进行内容筛选,减轻人力负担。通过深入分析文本摘要与新闻制作的交汇点,本章将从文本摘要的基础概念出发,进一步探讨它在新闻制作中的具体应用和优化策
recommend-type

日本南开海槽砂质沉积物粒径级配曲线

日本南开海槽是位于日本海的一个地质构造,其砂质沉积物的粒径级配曲线是用来描述该区域砂质沉积物中不同粒径颗粒的相对含量。粒径级配曲线通常是通过粒度分析得到的,它能反映出沉积物的粒度分布特征。 在绘制粒径级配曲线时,横坐标一般表示颗粒的粒径大小,纵坐标表示小于或等于某一粒径的颗粒的累计百分比。通过这样的曲线,可以直观地看出沉积物的粒度分布情况。粒径级配曲线可以帮助地质学家和海洋学家了解沉积环境的变化,比如水动力条件、沉积物来源和搬运过程等。 通常,粒径级配曲线会呈现出不同的形状,如均匀分布、正偏态、负偏态等。这些不同的曲线形状反映了沉积物的不同沉积环境和动力学特征。在南开海槽等深海环境中,沉积
recommend-type

Kubernetes资源管控与Gardener开源软件实践解析

"Kubernetes资源管控心得与Gardener开源软件资料下载.pdf" 在云计算领域,Kubernetes已经成为管理容器化应用程序的事实标准。然而,随着集群规模的扩大,资源管控变得日益复杂,这正是卢震宇,一位拥有丰富经验的SAP云平台软件开发经理,分享的主题。他强调了在Kubernetes环境中进行资源管控的心得体会,并介绍了Gardener这一开源项目,旨在解决云原生应用管理中的挑战。 在管理云原生应用时,企业面临诸多问题。首先,保持Kubernetes集群的更新和安全补丁安装是基础但至关重要的任务,这关系到系统的稳定性和安全性。其次,节点操作系统维护同样不可忽视,确保所有组件都能正常运行。再者,多云策略对于贴近客户、提供灵活部署选项至关重要。此外,根据负载自动扩展能力是现代云基础设施的必备功能,能够确保资源的有效利用。最后,遵循安全最佳实践,防止潜在的安全威胁,是保障业务连续性的关键。 为了解决这些挑战,Gardener项目应运而生。Gardener是一个基于Kubernetes构建的服务,它遵循“用Kubernetes管理一切”的原则,扩展了Kubernetes API服务器的功能,使得管理数千个企业级Kubernetes集群变得可能。通过Gardener,可以实现自动化升级、安全管理和跨云操作,大大减轻了Day2操作的复杂性。 Gardener的核心特性包括: 1. 自动化运维:Gardener能够自动化处理集群的生命周期管理,如创建、扩展、更新和删除。 2. 集群一致性:确保所有集群都遵循统一的标准和最佳实践,无论它们位于哪个云提供商之上。 3. 弹性伸缩:根据工作负载自动调整集群规模,以优化资源利用率。 4. 跨云支持:支持多云策略,帮助企业灵活地在不同云环境之间迁移。 5. 安全性:内置安全机制,确保集群及其应用程序的安全运行。 通过学习卢震宇分享的资料和深入理解Gardener项目,IT专业人员能够更好地应对Kubernetes资源管控的挑战,提升云原生应用的运营效率和可靠性。Gardener不仅是一个工具,更是一种方法论,它推动了Kubernetes在大规模企业环境中的落地和普及。