org.apache.spark.sql.catalyst.
时间: 2023-04-29 18:06:17 浏览: 548
这是 Spark SQL 中的一个模块,命名空间为 org.apache.spark.sql.catalyst。它主要负责 SQL 的解析、优化、执行等核心功能,是 Spark SQL 的重要组成部分。
相关问题
ERROR Executor: Exception in task 0.0 in stage 39.0 (TID 61)2]org.apache.spark.SparkException: Failed to execute user defined function (StringIndexerModel$$Lambda$3385/9616484: (string) => double) at org.apache.spark.sql.errors.QueryExecutionErrors$.failedExecuteUserDefinedFunctionError(QueryExecutionErrors.scala:190) at org.apache.spark.sql.errors.QueryExecutionErrors.failedExecuteUserDefinedFunctionError(QueryExecutionErrors.scala) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:760)
这是一个Apache Spark的错误信息,通常在处理大规模数据时会出现。该错误信息表明在执行用户自定义函数时发生了错误。原因可能是函数的实现不正确或不完整,也可能是传递给函数的参数有误。您可以检查函数的实现并确保它符合预期,或者检查传递给函数的参数是否正确。另外,您还可以尝试查看错误信息的堆栈跟踪,以获取更多有关错误的信息。
23/06/11 20:11:09 INFO internal.SharedState: Warehouse path is '/export/servers/spark/spark-warehouse'. Exception in thread "main" org.apache.spark.sql.AnalysisException: cannot resolve 'date_format(unix_timestamp(`timestamp`, 'yyyy-MM-dd\'T\'HH:mm:ss.SSS'), 'yyyy-MM-dd HH:mm:ss')' due to data type mismatch: argument 1 requires timestamp type, however, 'unix_timestamp(`timestamp`, 'yyyy-MM-dd\'T\'HH:mm:ss.SSS')' is of bigint type.; at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:82) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:74) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:301) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:301) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:69)
这个错误是由于在你的代码中调用了 `date_format` 函数,但是该函数的参数类型不匹配所致。具体来说,你使用了 `unix_timestamp` 函数将 `timestamp` 字段转换为 Unix 时间戳,但是 `unix_timestamp` 函数返回的是 `bigint` 类型,而 `date_format` 函数要求的参数是 `timestamp` 类型。因此,你需要在调用 `date_format` 函数之前将 `unix_timestamp` 函数返回的 `bigint` 类型转换为 `timestamp` 类型。你可以使用 `from_unixtime` 函数将 Unix 时间戳转换为 `timestamp` 类型,然后再调用 `date_format` 函数进行格式化。例如:
```
import org.apache.spark.sql.functions._
val df = spark.read.format("csv").load("input.csv")
val formattedDf = df.withColumn("timestamp", from_unixtime(unix_timestamp($"timestamp", "yyyy-MM-dd'T'HH:mm:ss.SSS")).cast("timestamp"))
.withColumn("formatted_timestamp", date_format($"timestamp", "yyyy-MM-dd HH:mm:ss"))
formattedDf.show()
```
在上面的示例中,我们使用 `from_unixtime` 函数将 `timestamp` 列中的 Unix 时间戳转换为 `timestamp` 类型,并将结果保存到新的 `timestamp` 列中。然后,我们使用 `date_format` 函数对 `timestamp` 列进行格式化,将结果保存到 `formatted_timestamp` 列中。
阅读全文