写一个使用雅可比迭代法及SOR迭代法求解线性方程组Hx=b的matlab程序,其中系数矩阵H为希尔伯特矩阵
时间: 2024-05-22 22:17:11 浏览: 138
好的,以下是使用雅可比迭代法和SOR迭代法求解线性方程组Hx=b的Matlab程序:
% 定义希尔伯特矩阵H和右侧向量b
n = 6;
H = hilb(n);
b = ones(n, 1);
% 定义迭代次数和初始估计值
max_iter = 1000;
x0 = zeros(n, 1);
% 定义雅可比迭代法
function [x, cnt] = jacobi(H, b, max_iter, x0)
n = length(b);
x = x0;
cnt = 0;
for k = 1 : max_iter
for i = 1 : n
x(i) = (b(i) - H(i, :) * x + H(i, i) * x(i)) / H(i, i);
end
cnt = cnt + 1;
if norm(H * x - b) < 1e-6
break;
end
end
end
% 定义SOR迭代法
function [x, cnt] = sor(H, b, max_iter, x0, omega)
n = length(b);
x = x0;
cnt = 0;
for k = 1 : max_iter
for i = 1 : n
x(i) = (1 - omega) * x(i) + omega * (b(i) - H(i, :) * x + H(i, i) * x(i)) / H(i, i);
end
cnt = cnt + 1;
if norm(H * x - b) < 1e-6
break;
end
end
end
% 调用雅可比迭代法和SOR迭代法求解线性方程组
[x_j, cnt_j] = jacobi(H, b, max_iter, x0);
[x_s, cnt_s] = sor(H, b, max_iter, x0, 1.2);
% 输出结果
fprintf('雅可比迭代法求解结果:\n');
fprintf('迭代次数:%d\n', cnt_j);
fprintf('解向量:\n');
disp(x_j);
fprintf('SOR迭代法求解结果:\n');
fprintf('迭代次数:%d\n', cnt_s);
fprintf('解向量:\n');
disp(x_s);
注意,在ChitGPT中执行Matlab程序的方式可能与本地有所不同,如需其他协助请咨询技术支持人员。
阅读全文
相关推荐

















