mobilenetv3代码

时间: 2023-09-17 22:05:26 浏览: 165
MobileNetV3是一种高效的神经网络架构,可用于图像识别和图像分类任务。它是MobileNetV2的改进版本,具有更好的性能和更少的计算量。 MobileNetV3的代码实现主要包括网络架构定义、模型训练和模型推理三个部分。 首先,在网络架构定义部分,需要定义网络的各个层和操作。MobileNetV3使用了一种叫做“轻量化候选策略”的方法,通过选择适当的候选操作来构建网络。这种方法将网络的计算量和参数数量减少到最小,并且保持高准确率。在定义网络时,需要按照论文中的描述选择合适的操作和超参数。 其次,在模型训练部分,可以使用常见的深度学习框架如TensorFlow或PyTorch来训练模型。训练数据通常是一组带有标签的图像,可以选择合适的损失函数和优化算法来进行训练。在训练过程中,需要根据数据集的大小和计算资源的限制来选择合适的训练策略。 最后,在模型推理部分,可以使用训练好的模型进行图像识别或分类任务。将输入图像传入模型,经过前向传播计算得到输出结果。MobileNetV3的推理速度非常快,适合在移动设备上部署和使用。 总结来说,MobileNetV3是一种高效的神经网络架构,其代码实现主要包括网络架构定义、模型训练和模型推理三个部分。通过选择合适的操作和超参数,用训练数据进行模型训练,最后使用训练好的模型进行推理,可以实现高效的图像识别和分类。
相关问题

Mobilenetv3代码

以下是使用PyTorch实现MobileNetV3的代码: ```python import torch import torch.nn as nn import torch.nn.functional as F class Hswish(nn.Module): def __init__(self, inplace=True): super(Hswish, self).__init__() self.inplace = inplace def forward(self, x): if self.inplace: return x.mul_(F.relu6(x + 3., inplace=True)) / 6. else: return F.relu6(x + 3.) * x / 6. class Hsigmoid(nn.Module): def __init__(self, inplace=True): super(Hsigmoid, self).__init__() self.inplace = inplace def forward(self, x): if self.inplace: return F.relu6(x + 3., inplace=True) / 6. else: return F.relu6(x + 3.) / 6. class SEModule(nn.Module): def __init__(self, in_channels, reduction_ratio=4): super(SEModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(in_channels, in_channels // reduction_ratio, kernel_size=1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(in_channels // reduction_ratio, in_channels, kernel_size=1, bias=False) self.hsigmoid = Hsigmoid() def forward(self, x): module_input = x x = self.avg_pool(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.hsigmoid(x) return module_input * x class MobileNetV3Block(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, use_se, activation): super(MobileNetV3Block, self).__init__() self.use_se = use_se self.activation = activation padding = (kernel_size - 1) // 2 self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = nn.BatchNorm2d(in_channels) self.conv2 = nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=in_channels, bias=False) self.bn2 = nn.BatchNorm2d(in_channels) self.conv3 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False) self.bn3 = nn.BatchNorm2d(out_channels) if use_se: self.se = SEModule(out_channels) if activation == 'relu': self.activation_fn = nn.ReLU(inplace=True) elif activation == 'hswish': self.activation_fn = Hswish(inplace=True) def forward(self, x): module_input = x x = self.conv1(x) x = self.bn1(x) x = self.activation_fn(x) x = self.conv2(x) x = self.bn2(x) x = self.activation_fn(x) x = self.conv3(x) x = self.bn3(x) if self.use_se: x = self.se(x) x += module_input return x class MobileNetV3Large(nn.Module): def __init__(self, num_classes=1000): super(MobileNetV3Large, self).__init__() # Settings for feature extraction part self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.hs1 = Hswish() self.block1 = MobileNetV3Block(16, 16, kernel_size=3, stride=1, use_se=False, activation='relu') self.block2 = MobileNetV3Block(16, 24, kernel_size=3, stride=2, use_se=False, activation='relu') self.block3 = MobileNetV3Block(24, 24, kernel_size=3, stride=1, use_se=False, activation='relu') self.block4 = MobileNetV3Block(24, 40, kernel_size=5, stride=2, use_se=True, activation='relu') self.block5 = MobileNetV3Block(40, 40, kernel_size=5, stride=1, use_se=True, activation='relu') self.block6 = MobileNetV3Block(40, 40, kernel_size=5, stride=1, use_se=True, activation='relu') self.block7 = MobileNetV3Block(40, 80, kernel_size=3, stride=2, use_se=False, activation='hswish') self.block8 = MobileNetV3Block(80, 80, kernel_size=3, stride=1, use_se=False, activation='hswish') self.block9 = MobileNetV3Block(80, 80, kernel_size=3, stride=1, use_se=False, activation='hswish') self.block10 = MobileNetV3Block(80, 112, kernel_size=3, stride=1, use_se=True, activation='hswish') self.block11 = MobileNetV3Block(112, 112, kernel_size=3, stride=1, use_se=True, activation='hswish') self.block12 = MobileNetV3Block(112, 160, kernel_size=5, stride=2, use_se=True, activation='hswish') self.block13 = MobileNetV3Block(160, 160, kernel_size=5, stride=1, use_se=True, activation='hswish') self.block14 = MobileNetV3Block(160, 160, kernel_size=5, stride=1, use_se=True, activation='hswish') # Settings for classification part self.conv2 = nn.Conv2d(160, 960, kernel_size=1, stride=1, padding=0, bias=False) self.bn2 = nn.BatchNorm2d(960) self.hs2 = Hswish() self.avgpool = nn.AdaptiveAvgPool2d(1) self.dropout = nn.Dropout(p=0.2, inplace=True) self.fc = nn.Linear(960, num_classes) # Weight initialization self._initialize_weights() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.hs1(x) x = self.block1(x) x = self.block2(x) x = self.block3(x) x = self.block4(x) x = self.block5(x) x = self.block6(x) x = self.block7(x) x = self.block8(x) x = self.block9(x) x = self.block10(x) x = self.block11(x) x = self.block12(x) x = self.block13(x) x = self.block14(x) x = self.conv2(x) x = self.bn2(x) x = self.hs2(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.dropout(x) x = self.fc(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias) ``` 这是MobileNetV3的大型版本,你也可以根据需要修改输入和输出通道数等参数来创建其他版本的MobileNetV3。

给出mobilenetv3代码示例,用torch实现

以下是使用 PyTorch 实现 MobileNetV3 的代码示例: ```python import torch.nn as nn import torch.nn.functional as F class MobileNetV3(nn.Module): def __init__(self, num_classes=1000, width_mult=1.0): super(MobileNetV3, self).__init__() self.in_channels = int(16 * width_mult) self.conv1 = nn.Conv2d(3, self.in_channels, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(self.in_channels) self.hs1 = nn.Hardswish() self.bottlenecks = nn.Sequential( Bottleneck(self.in_channels, int(16 * width_mult), 3, 1, False, False), Bottleneck(int(16 * width_mult), int(24 * width_mult), 3, 2, False, False), Bottleneck(int(24 * width_mult), int(24 * width_mult), 3, 1, False, False), Bottleneck(int(24 * width_mult), int(40 * width_mult), 5, 2, True, False), Bottleneck(int(40 * width_mult), int(40 * width_mult), 5, 1, True, False), Bottleneck(int(40 * width_mult), int(40 * width_mult), 5, 1, True, False), Bottleneck(int(40 * width_mult), int(80 * width_mult), 3, 2, False, True), Bottleneck(int(80 * width_mult), int(80 * width_mult), 3, 1, False, True), Bottleneck(int(80 * width_mult), int(80 * width_mult), 3, 1, False, True), Bottleneck(int(80 * width_mult), int(112 * width_mult), 5, 1, True, True), Bottleneck(int(112 * width_mult), int(112 * width_mult), 5, 1, True, True), Bottleneck(int(112 * width_mult), int(160 * width_mult), 5, 2, True, True), Bottleneck(int(160 * width_mult), int(160 * width_mult), 5, 1, True, True), Bottleneck(int(160 * width_mult), int(160 * width_mult), 5, 1, True, True), ) self.conv2 = nn.Conv2d(int(160 * width_mult), int(960 * width_mult), kernel_size=1, stride=1, bias=False) self.bn2 = nn.BatchNorm2d(int(960 * width_mult)) self.hs2 = nn.Hardswish() self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.dropout = nn.Dropout(p=0.2, inplace=True) self.fc = nn.Linear(int(960 * width_mult), num_classes) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.hs1(x) x = self.bottlenecks(x) x = self.conv2(x) x = self.bn2(x) x = self.hs2(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.dropout(x) x = self.fc(x) return x class Bottleneck(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, use_se, use_hs): super(Bottleneck, self).__init__() self.stride = stride self.use_se = use_se self.use_hs = use_hs mid_channels = int(in_channels / 4) self.conv1 = nn.Conv2d(in_channels, mid_channels, kernel_size=1, stride=1, bias=False) self.bn1 = nn.BatchNorm2d(mid_channels) self.hs1 = nn.Hardswish() if use_hs else nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(mid_channels, mid_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, groups=mid_channels, bias=False) self.bn2 = nn.BatchNorm2d(mid_channels) self.hs2 = nn.Hardswish() if use_hs else nn.ReLU(inplace=True) if use_se: self.se = SEBlock(mid_channels) self.conv3 = nn.Conv2d(mid_channels, out_channels, kernel_size=1, stride=1, bias=False) self.bn3 = nn.BatchNorm2d(out_channels) self.hs3 = nn.Hardswish() if use_hs else nn.ReLU(inplace=True) self.shortcut = nn.Sequential() if stride == 1 and in_channels != out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(out_channels), ) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.hs1(out) out = self.conv2(out) out = self.bn2(out) out = self.hs2(out) if self.use_se: out = self.se(out) out = self.conv3(out) out = self.bn3(out) out = self.hs3(out) out += self.shortcut(x) if self.stride == 1 else out return out class SEBlock(nn.Module): def __init__(self, channels, reduction=4): super(SEBlock, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channels, channels // reduction, bias=False), nn.ReLU(inplace=True), nn.Linear(channels // reduction, channels, bias=False), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y.expand_as(x) ``` 这是一个 MobileNetV3 的实现,可以用于图像分类任务。其中,`width_mult` 参数可以控制模型的宽度,可以根据实际情况进行调整。
阅读全文

相关推荐

zip

最新推荐

recommend-type

(179979052)基于MATLAB车牌识别系统【带界面GUI】.zip

基于MATLAB车牌识别系统【带界面GUI】.zip。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

DG储能选址定容模型matlab 程序采用改进粒子群算法,考虑时序性得到分布式和储能的选址定容模型,程序运行可靠 这段程序是一个改进的粒子群算法,主要用于解决电力系统中的优化问题 下面我将对程序进行详

DG储能选址定容模型matlab 程序采用改进粒子群算法,考虑时序性得到分布式和储能的选址定容模型,程序运行可靠 这段程序是一个改进的粒子群算法,主要用于解决电力系统中的优化问题。下面我将对程序进行详细分析。 首先,程序开始时加载了一些数据文件,包括gfjl、fljl、fhjl1、cjgs和fhbl。这些文件可能包含了电力系统的各种参数和数据。 接下来是一些参数的设置,包括三种蓄电池的参数矩阵、迭代次数、种群大小、速度更新参数、惯性权重、储能动作策略和限制条件等。 然后,程序进行了一些初始化操作,包括初始化种群、速度和适应度等。 接下来是主要的迭代过程。程序使用粒子群算法的思想,通过更新粒子的位置和速度来寻找最优解。在每次迭代中,程序计算了每个粒子的适应度,并更新个体最佳位置和全局最佳位置。 在每次迭代中,程序还进行了一些额外的计算,如潮流计算、储能约束等。这些计算可能涉及到电力系统的潮流计算、功率平衡等知识点。 最后,程序输出了一些结果,包括最佳位置和适应度等。同时,程序还绘制了一些图形,如电压和损耗的变化等。 综上所述,这段程序主要是一个改进的粒子群算法,用于解决电力
recommend-type

三保一评关系与区别分析

三保一评关系与区别分析
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【天线性能提升密籍】:深入探究均匀线阵方向图设计原则及案例分析

![均匀线阵方向图](https://img-blog.csdnimg.cn/img_convert/0080eea0ca4af421d2bc9c74b87376c4.webp?x-oss-process=image/format,png) # 摘要 本文深入探讨了均匀线阵天线的基础理论及其方向图设计,旨在提升天线系统的性能和应用效能。文章首先介绍了均匀线阵及方向图的基本概念,并阐述了方向图设计的理论基础,包括波束形成与主瓣及副瓣特性的控制。随后,论文通过设计软件工具的应用和实际天线系统调试方法,展示了方向图设计的实践技巧。文中还包含了一系列案例分析,以实证研究验证理论,并探讨了均匀线阵性能