mobilenetv3代码
时间: 2023-09-17 21:05:26 浏览: 155
MobileNetV3是一种高效的神经网络架构,可用于图像识别和图像分类任务。它是MobileNetV2的改进版本,具有更好的性能和更少的计算量。
MobileNetV3的代码实现主要包括网络架构定义、模型训练和模型推理三个部分。
首先,在网络架构定义部分,需要定义网络的各个层和操作。MobileNetV3使用了一种叫做“轻量化候选策略”的方法,通过选择适当的候选操作来构建网络。这种方法将网络的计算量和参数数量减少到最小,并且保持高准确率。在定义网络时,需要按照论文中的描述选择合适的操作和超参数。
其次,在模型训练部分,可以使用常见的深度学习框架如TensorFlow或PyTorch来训练模型。训练数据通常是一组带有标签的图像,可以选择合适的损失函数和优化算法来进行训练。在训练过程中,需要根据数据集的大小和计算资源的限制来选择合适的训练策略。
最后,在模型推理部分,可以使用训练好的模型进行图像识别或分类任务。将输入图像传入模型,经过前向传播计算得到输出结果。MobileNetV3的推理速度非常快,适合在移动设备上部署和使用。
总结来说,MobileNetV3是一种高效的神经网络架构,其代码实现主要包括网络架构定义、模型训练和模型推理三个部分。通过选择合适的操作和超参数,用训练数据进行模型训练,最后使用训练好的模型进行推理,可以实现高效的图像识别和分类。
相关问题
Mobilenetv3代码
以下是使用PyTorch实现MobileNetV3的代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class Hswish(nn.Module):
def __init__(self, inplace=True):
super(Hswish, self).__init__()
self.inplace = inplace
def forward(self, x):
if self.inplace:
return x.mul_(F.relu6(x + 3., inplace=True)) / 6.
else:
return F.relu6(x + 3.) * x / 6.
class Hsigmoid(nn.Module):
def __init__(self, inplace=True):
super(Hsigmoid, self).__init__()
self.inplace = inplace
def forward(self, x):
if self.inplace:
return F.relu6(x + 3., inplace=True) / 6.
else:
return F.relu6(x + 3.) / 6.
class SEModule(nn.Module):
def __init__(self, in_channels, reduction_ratio=4):
super(SEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Conv2d(in_channels, in_channels // reduction_ratio, kernel_size=1, bias=False)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(in_channels // reduction_ratio, in_channels, kernel_size=1, bias=False)
self.hsigmoid = Hsigmoid()
def forward(self, x):
module_input = x
x = self.avg_pool(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.hsigmoid(x)
return module_input * x
class MobileNetV3Block(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, use_se, activation):
super(MobileNetV3Block, self).__init__()
self.use_se = use_se
self.activation = activation
padding = (kernel_size - 1) // 2
self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0, bias=False)
self.bn1 = nn.BatchNorm2d(in_channels)
self.conv2 = nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=in_channels, bias=False)
self.bn2 = nn.BatchNorm2d(in_channels)
self.conv3 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels)
if use_se:
self.se = SEModule(out_channels)
if activation == 'relu':
self.activation_fn = nn.ReLU(inplace=True)
elif activation == 'hswish':
self.activation_fn = Hswish(inplace=True)
def forward(self, x):
module_input = x
x = self.conv1(x)
x = self.bn1(x)
x = self.activation_fn(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.activation_fn(x)
x = self.conv3(x)
x = self.bn3(x)
if self.use_se:
x = self.se(x)
x += module_input
return x
class MobileNetV3Large(nn.Module):
def __init__(self, num_classes=1000):
super(MobileNetV3Large, self).__init__()
# Settings for feature extraction part
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.hs1 = Hswish()
self.block1 = MobileNetV3Block(16, 16, kernel_size=3, stride=1, use_se=False, activation='relu')
self.block2 = MobileNetV3Block(16, 24, kernel_size=3, stride=2, use_se=False, activation='relu')
self.block3 = MobileNetV3Block(24, 24, kernel_size=3, stride=1, use_se=False, activation='relu')
self.block4 = MobileNetV3Block(24, 40, kernel_size=5, stride=2, use_se=True, activation='relu')
self.block5 = MobileNetV3Block(40, 40, kernel_size=5, stride=1, use_se=True, activation='relu')
self.block6 = MobileNetV3Block(40, 40, kernel_size=5, stride=1, use_se=True, activation='relu')
self.block7 = MobileNetV3Block(40, 80, kernel_size=3, stride=2, use_se=False, activation='hswish')
self.block8 = MobileNetV3Block(80, 80, kernel_size=3, stride=1, use_se=False, activation='hswish')
self.block9 = MobileNetV3Block(80, 80, kernel_size=3, stride=1, use_se=False, activation='hswish')
self.block10 = MobileNetV3Block(80, 112, kernel_size=3, stride=1, use_se=True, activation='hswish')
self.block11 = MobileNetV3Block(112, 112, kernel_size=3, stride=1, use_se=True, activation='hswish')
self.block12 = MobileNetV3Block(112, 160, kernel_size=5, stride=2, use_se=True, activation='hswish')
self.block13 = MobileNetV3Block(160, 160, kernel_size=5, stride=1, use_se=True, activation='hswish')
self.block14 = MobileNetV3Block(160, 160, kernel_size=5, stride=1, use_se=True, activation='hswish')
# Settings for classification part
self.conv2 = nn.Conv2d(160, 960, kernel_size=1, stride=1, padding=0, bias=False)
self.bn2 = nn.BatchNorm2d(960)
self.hs2 = Hswish()
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.dropout = nn.Dropout(p=0.2, inplace=True)
self.fc = nn.Linear(960, num_classes)
# Weight initialization
self._initialize_weights()
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.hs1(x)
x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
x = self.block4(x)
x = self.block5(x)
x = self.block6(x)
x = self.block7(x)
x = self.block8(x)
x = self.block9(x)
x = self.block10(x)
x = self.block11(x)
x = self.block12(x)
x = self.block13(x)
x = self.block14(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.hs2(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.dropout(x)
x = self.fc(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
```
这是MobileNetV3的大型版本,你也可以根据需要修改输入和输出通道数等参数来创建其他版本的MobileNetV3。
给出mobilenetv3代码示例,用torch实现
下面是一个基于torch实现的mobilenetv3代码示例:
```python
import torch
import torch.nn as nn
class Hswish(nn.Module):
def forward(self, x):
relu6 = nn.ReLU6(inplace=True)
return x * relu6(x + 3) / 6
class Hsigmoid(nn.Module):
def forward(self, x):
return nn.functional.relu6(x + 3) / 6
class ConvBNReLU(nn.Sequential):
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
padding = (kernel_size - 1) // 2
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
nn.BatchNorm2d(out_planes),
Hswish()
)
class SqueezeExcitation(nn.Module):
def __init__(self, in_planes, se_planes):
super(SqueezeExcitation, self).__init__()
self.se = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_planes, se_planes, 1),
Hswish(),
nn.Conv2d(se_planes, in_planes, 1),
Hsigmoid()
)
def forward(self, x):
return x * self.se(x)
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio):
super(InvertedResidual, self).__init__()
hidden_dim = round(inp * expand_ratio)
self.use_res_connect = stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
layers.extend([
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
SqueezeExcitation(hidden_dim, round(inp * 0.25)),
nn.Conv2d(hidden_dim, oup, 1, bias=False),
nn.BatchNorm2d(oup),
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV3(nn.Module):
def __init__(self, num_classes=1000, mode='large', width_mult=1.0):
super(MobileNetV3, self).__init__()
self.cfgs = [
# k, t, c, SE, s
[3, 16, 16, 0, 1],
[3, 64, 24, 0, 2],
[3, 72, 24, 0, 1],
[5, 72, 40, 1, 2],
[5, 120, 40, 1, 1],
[5, 120, 40, 1, 1],
[3, 240, 80, 0, 2],
[3, 200, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 480, 112, 1, 1],
[3, 672, 112, 1, 1],
[5, 672, 160, 1, 2],
[5, 960, 160, 0, 1],
[5, 960, 160, 1, 1]
]
if mode == 'large':
interverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
last_channel = 1280
elif mode == 'small':
interverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 192, 2, 2],
[6, 320, 1, 1],
]
last_channel = 1024
else:
raise NotImplementedError
input_channel = int(16 * width_mult)
self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel
# building first layer
self.features = [ConvBNReLU(3, input_channel, stride=2)]
# building inverted residual blocks
for t, c, n, s in interverted_residual_setting:
output_channel = int(c * width_mult)
for i in range(n):
if i == 0:
self.features.append(InvertedResidual(input_channel, output_channel, s, t))
else:
self.features.append(InvertedResidual(input_channel, output_channel, 1, t))
input_channel = output_channel
# building last several layers
self.features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1))
self.features.append(nn.AdaptiveAvgPool2d(1))
# make it nn.Sequential
self.features = nn.Sequential(*self.features)
# building classifier
self.classifier = nn.Sequential(
nn.Linear(self.last_channel, 1280),
Hswish(),
nn.Dropout(0.2),
nn.Linear(1280, num_classes),
)
self._initialize_weights()
def forward(self, x):
x = self.features(x)
x = x.view(-1, self.last_channel)
x = self.classifier(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
```
以上是一个标准的mobilenetv3实现,包括了基本的模块,如InvertedResidual,SqueezeExcitation等等。同时也包括了两种模式的实现,即'mode=large'和'mode=small',以及相应的参数width_mult,用于控制模型的宽度。在实现时,我们参考了官方的实现以及其他开源实现,并进行了一些修改和调整,以便更好地适应我们的需求。
阅读全文