mobilenetv3代码
时间: 2023-09-17 22:05:26 浏览: 165
MobileNetV3是一种高效的神经网络架构,可用于图像识别和图像分类任务。它是MobileNetV2的改进版本,具有更好的性能和更少的计算量。
MobileNetV3的代码实现主要包括网络架构定义、模型训练和模型推理三个部分。
首先,在网络架构定义部分,需要定义网络的各个层和操作。MobileNetV3使用了一种叫做“轻量化候选策略”的方法,通过选择适当的候选操作来构建网络。这种方法将网络的计算量和参数数量减少到最小,并且保持高准确率。在定义网络时,需要按照论文中的描述选择合适的操作和超参数。
其次,在模型训练部分,可以使用常见的深度学习框架如TensorFlow或PyTorch来训练模型。训练数据通常是一组带有标签的图像,可以选择合适的损失函数和优化算法来进行训练。在训练过程中,需要根据数据集的大小和计算资源的限制来选择合适的训练策略。
最后,在模型推理部分,可以使用训练好的模型进行图像识别或分类任务。将输入图像传入模型,经过前向传播计算得到输出结果。MobileNetV3的推理速度非常快,适合在移动设备上部署和使用。
总结来说,MobileNetV3是一种高效的神经网络架构,其代码实现主要包括网络架构定义、模型训练和模型推理三个部分。通过选择合适的操作和超参数,用训练数据进行模型训练,最后使用训练好的模型进行推理,可以实现高效的图像识别和分类。
相关问题
Mobilenetv3代码
以下是使用PyTorch实现MobileNetV3的代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class Hswish(nn.Module):
def __init__(self, inplace=True):
super(Hswish, self).__init__()
self.inplace = inplace
def forward(self, x):
if self.inplace:
return x.mul_(F.relu6(x + 3., inplace=True)) / 6.
else:
return F.relu6(x + 3.) * x / 6.
class Hsigmoid(nn.Module):
def __init__(self, inplace=True):
super(Hsigmoid, self).__init__()
self.inplace = inplace
def forward(self, x):
if self.inplace:
return F.relu6(x + 3., inplace=True) / 6.
else:
return F.relu6(x + 3.) / 6.
class SEModule(nn.Module):
def __init__(self, in_channels, reduction_ratio=4):
super(SEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Conv2d(in_channels, in_channels // reduction_ratio, kernel_size=1, bias=False)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(in_channels // reduction_ratio, in_channels, kernel_size=1, bias=False)
self.hsigmoid = Hsigmoid()
def forward(self, x):
module_input = x
x = self.avg_pool(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.hsigmoid(x)
return module_input * x
class MobileNetV3Block(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, use_se, activation):
super(MobileNetV3Block, self).__init__()
self.use_se = use_se
self.activation = activation
padding = (kernel_size - 1) // 2
self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0, bias=False)
self.bn1 = nn.BatchNorm2d(in_channels)
self.conv2 = nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=in_channels, bias=False)
self.bn2 = nn.BatchNorm2d(in_channels)
self.conv3 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels)
if use_se:
self.se = SEModule(out_channels)
if activation == 'relu':
self.activation_fn = nn.ReLU(inplace=True)
elif activation == 'hswish':
self.activation_fn = Hswish(inplace=True)
def forward(self, x):
module_input = x
x = self.conv1(x)
x = self.bn1(x)
x = self.activation_fn(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.activation_fn(x)
x = self.conv3(x)
x = self.bn3(x)
if self.use_se:
x = self.se(x)
x += module_input
return x
class MobileNetV3Large(nn.Module):
def __init__(self, num_classes=1000):
super(MobileNetV3Large, self).__init__()
# Settings for feature extraction part
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.hs1 = Hswish()
self.block1 = MobileNetV3Block(16, 16, kernel_size=3, stride=1, use_se=False, activation='relu')
self.block2 = MobileNetV3Block(16, 24, kernel_size=3, stride=2, use_se=False, activation='relu')
self.block3 = MobileNetV3Block(24, 24, kernel_size=3, stride=1, use_se=False, activation='relu')
self.block4 = MobileNetV3Block(24, 40, kernel_size=5, stride=2, use_se=True, activation='relu')
self.block5 = MobileNetV3Block(40, 40, kernel_size=5, stride=1, use_se=True, activation='relu')
self.block6 = MobileNetV3Block(40, 40, kernel_size=5, stride=1, use_se=True, activation='relu')
self.block7 = MobileNetV3Block(40, 80, kernel_size=3, stride=2, use_se=False, activation='hswish')
self.block8 = MobileNetV3Block(80, 80, kernel_size=3, stride=1, use_se=False, activation='hswish')
self.block9 = MobileNetV3Block(80, 80, kernel_size=3, stride=1, use_se=False, activation='hswish')
self.block10 = MobileNetV3Block(80, 112, kernel_size=3, stride=1, use_se=True, activation='hswish')
self.block11 = MobileNetV3Block(112, 112, kernel_size=3, stride=1, use_se=True, activation='hswish')
self.block12 = MobileNetV3Block(112, 160, kernel_size=5, stride=2, use_se=True, activation='hswish')
self.block13 = MobileNetV3Block(160, 160, kernel_size=5, stride=1, use_se=True, activation='hswish')
self.block14 = MobileNetV3Block(160, 160, kernel_size=5, stride=1, use_se=True, activation='hswish')
# Settings for classification part
self.conv2 = nn.Conv2d(160, 960, kernel_size=1, stride=1, padding=0, bias=False)
self.bn2 = nn.BatchNorm2d(960)
self.hs2 = Hswish()
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.dropout = nn.Dropout(p=0.2, inplace=True)
self.fc = nn.Linear(960, num_classes)
# Weight initialization
self._initialize_weights()
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.hs1(x)
x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
x = self.block4(x)
x = self.block5(x)
x = self.block6(x)
x = self.block7(x)
x = self.block8(x)
x = self.block9(x)
x = self.block10(x)
x = self.block11(x)
x = self.block12(x)
x = self.block13(x)
x = self.block14(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.hs2(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.dropout(x)
x = self.fc(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
```
这是MobileNetV3的大型版本,你也可以根据需要修改输入和输出通道数等参数来创建其他版本的MobileNetV3。
给出mobilenetv3代码示例,用torch实现
以下是使用 PyTorch 实现 MobileNetV3 的代码示例:
```python
import torch.nn as nn
import torch.nn.functional as F
class MobileNetV3(nn.Module):
def __init__(self, num_classes=1000, width_mult=1.0):
super(MobileNetV3, self).__init__()
self.in_channels = int(16 * width_mult)
self.conv1 = nn.Conv2d(3, self.in_channels, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(self.in_channels)
self.hs1 = nn.Hardswish()
self.bottlenecks = nn.Sequential(
Bottleneck(self.in_channels, int(16 * width_mult), 3, 1, False, False),
Bottleneck(int(16 * width_mult), int(24 * width_mult), 3, 2, False, False),
Bottleneck(int(24 * width_mult), int(24 * width_mult), 3, 1, False, False),
Bottleneck(int(24 * width_mult), int(40 * width_mult), 5, 2, True, False),
Bottleneck(int(40 * width_mult), int(40 * width_mult), 5, 1, True, False),
Bottleneck(int(40 * width_mult), int(40 * width_mult), 5, 1, True, False),
Bottleneck(int(40 * width_mult), int(80 * width_mult), 3, 2, False, True),
Bottleneck(int(80 * width_mult), int(80 * width_mult), 3, 1, False, True),
Bottleneck(int(80 * width_mult), int(80 * width_mult), 3, 1, False, True),
Bottleneck(int(80 * width_mult), int(112 * width_mult), 5, 1, True, True),
Bottleneck(int(112 * width_mult), int(112 * width_mult), 5, 1, True, True),
Bottleneck(int(112 * width_mult), int(160 * width_mult), 5, 2, True, True),
Bottleneck(int(160 * width_mult), int(160 * width_mult), 5, 1, True, True),
Bottleneck(int(160 * width_mult), int(160 * width_mult), 5, 1, True, True),
)
self.conv2 = nn.Conv2d(int(160 * width_mult), int(960 * width_mult), kernel_size=1, stride=1, bias=False)
self.bn2 = nn.BatchNorm2d(int(960 * width_mult))
self.hs2 = nn.Hardswish()
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.dropout = nn.Dropout(p=0.2, inplace=True)
self.fc = nn.Linear(int(960 * width_mult), num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.hs1(x)
x = self.bottlenecks(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.hs2(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.dropout(x)
x = self.fc(x)
return x
class Bottleneck(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, use_se, use_hs):
super(Bottleneck, self).__init__()
self.stride = stride
self.use_se = use_se
self.use_hs = use_hs
mid_channels = int(in_channels / 4)
self.conv1 = nn.Conv2d(in_channels, mid_channels, kernel_size=1, stride=1, bias=False)
self.bn1 = nn.BatchNorm2d(mid_channels)
self.hs1 = nn.Hardswish() if use_hs else nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(mid_channels, mid_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, groups=mid_channels, bias=False)
self.bn2 = nn.BatchNorm2d(mid_channels)
self.hs2 = nn.Hardswish() if use_hs else nn.ReLU(inplace=True)
if use_se:
self.se = SEBlock(mid_channels)
self.conv3 = nn.Conv2d(mid_channels, out_channels, kernel_size=1, stride=1, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels)
self.hs3 = nn.Hardswish() if use_hs else nn.ReLU(inplace=True)
self.shortcut = nn.Sequential()
if stride == 1 and in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(out_channels),
)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.hs1(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.hs2(out)
if self.use_se:
out = self.se(out)
out = self.conv3(out)
out = self.bn3(out)
out = self.hs3(out)
out += self.shortcut(x) if self.stride == 1 else out
return out
class SEBlock(nn.Module):
def __init__(self, channels, reduction=4):
super(SEBlock, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channels, channels // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channels // reduction, channels, bias=False),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y.expand_as(x)
```
这是一个 MobileNetV3 的实现,可以用于图像分类任务。其中,`width_mult` 参数可以控制模型的宽度,可以根据实际情况进行调整。
阅读全文