mobilenetv3代码

时间: 2023-09-17 12:05:26 浏览: 27
MobileNetV3是一种高效的神经网络架构,可用于图像识别和图像分类任务。它是MobileNetV2的改进版本,具有更好的性能和更少的计算量。 MobileNetV3的代码实现主要包括网络架构定义、模型训练和模型推理三个部分。 首先,在网络架构定义部分,需要定义网络的各个层和操作。MobileNetV3使用了一种叫做“轻量化候选策略”的方法,通过选择适当的候选操作来构建网络。这种方法将网络的计算量和参数数量减少到最小,并且保持高准确率。在定义网络时,需要按照论文中的描述选择合适的操作和超参数。 其次,在模型训练部分,可以使用常见的深度学习框架如TensorFlow或PyTorch来训练模型。训练数据通常是一组带有标签的图像,可以选择合适的损失函数和优化算法来进行训练。在训练过程中,需要根据数据集的大小和计算资源的限制来选择合适的训练策略。 最后,在模型推理部分,可以使用训练好的模型进行图像识别或分类任务。将输入图像传入模型,经过前向传播计算得到输出结果。MobileNetV3的推理速度非常快,适合在移动设备上部署和使用。 总结来说,MobileNetV3是一种高效的神经网络架构,其代码实现主要包括网络架构定义、模型训练和模型推理三个部分。通过选择合适的操作和超参数,用训练数据进行模型训练,最后使用训练好的模型进行推理,可以实现高效的图像识别和分类。
相关问题

Mobilenetv3代码

以下是使用PyTorch实现MobileNetV3的代码: ```python import torch import torch.nn as nn import torch.nn.functional as F class Hswish(nn.Module): def __init__(self, inplace=True): super(Hswish, self).__init__() self.inplace = inplace def forward(self, x): if self.inplace: return x.mul_(F.relu6(x + 3., inplace=True)) / 6. else: return F.relu6(x + 3.) * x / 6. class Hsigmoid(nn.Module): def __init__(self, inplace=True): super(Hsigmoid, self).__init__() self.inplace = inplace def forward(self, x): if self.inplace: return F.relu6(x + 3., inplace=True) / 6. else: return F.relu6(x + 3.) / 6. class SEModule(nn.Module): def __init__(self, in_channels, reduction_ratio=4): super(SEModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(in_channels, in_channels // reduction_ratio, kernel_size=1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(in_channels // reduction_ratio, in_channels, kernel_size=1, bias=False) self.hsigmoid = Hsigmoid() def forward(self, x): module_input = x x = self.avg_pool(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.hsigmoid(x) return module_input * x class MobileNetV3Block(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, use_se, activation): super(MobileNetV3Block, self).__init__() self.use_se = use_se self.activation = activation padding = (kernel_size - 1) // 2 self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = nn.BatchNorm2d(in_channels) self.conv2 = nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=in_channels, bias=False) self.bn2 = nn.BatchNorm2d(in_channels) self.conv3 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False) self.bn3 = nn.BatchNorm2d(out_channels) if use_se: self.se = SEModule(out_channels) if activation == 'relu': self.activation_fn = nn.ReLU(inplace=True) elif activation == 'hswish': self.activation_fn = Hswish(inplace=True) def forward(self, x): module_input = x x = self.conv1(x) x = self.bn1(x) x = self.activation_fn(x) x = self.conv2(x) x = self.bn2(x) x = self.activation_fn(x) x = self.conv3(x) x = self.bn3(x) if self.use_se: x = self.se(x) x += module_input return x class MobileNetV3Large(nn.Module): def __init__(self, num_classes=1000): super(MobileNetV3Large, self).__init__() # Settings for feature extraction part self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.hs1 = Hswish() self.block1 = MobileNetV3Block(16, 16, kernel_size=3, stride=1, use_se=False, activation='relu') self.block2 = MobileNetV3Block(16, 24, kernel_size=3, stride=2, use_se=False, activation='relu') self.block3 = MobileNetV3Block(24, 24, kernel_size=3, stride=1, use_se=False, activation='relu') self.block4 = MobileNetV3Block(24, 40, kernel_size=5, stride=2, use_se=True, activation='relu') self.block5 = MobileNetV3Block(40, 40, kernel_size=5, stride=1, use_se=True, activation='relu') self.block6 = MobileNetV3Block(40, 40, kernel_size=5, stride=1, use_se=True, activation='relu') self.block7 = MobileNetV3Block(40, 80, kernel_size=3, stride=2, use_se=False, activation='hswish') self.block8 = MobileNetV3Block(80, 80, kernel_size=3, stride=1, use_se=False, activation='hswish') self.block9 = MobileNetV3Block(80, 80, kernel_size=3, stride=1, use_se=False, activation='hswish') self.block10 = MobileNetV3Block(80, 112, kernel_size=3, stride=1, use_se=True, activation='hswish') self.block11 = MobileNetV3Block(112, 112, kernel_size=3, stride=1, use_se=True, activation='hswish') self.block12 = MobileNetV3Block(112, 160, kernel_size=5, stride=2, use_se=True, activation='hswish') self.block13 = MobileNetV3Block(160, 160, kernel_size=5, stride=1, use_se=True, activation='hswish') self.block14 = MobileNetV3Block(160, 160, kernel_size=5, stride=1, use_se=True, activation='hswish') # Settings for classification part self.conv2 = nn.Conv2d(160, 960, kernel_size=1, stride=1, padding=0, bias=False) self.bn2 = nn.BatchNorm2d(960) self.hs2 = Hswish() self.avgpool = nn.AdaptiveAvgPool2d(1) self.dropout = nn.Dropout(p=0.2, inplace=True) self.fc = nn.Linear(960, num_classes) # Weight initialization self._initialize_weights() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.hs1(x) x = self.block1(x) x = self.block2(x) x = self.block3(x) x = self.block4(x) x = self.block5(x) x = self.block6(x) x = self.block7(x) x = self.block8(x) x = self.block9(x) x = self.block10(x) x = self.block11(x) x = self.block12(x) x = self.block13(x) x = self.block14(x) x = self.conv2(x) x = self.bn2(x) x = self.hs2(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.dropout(x) x = self.fc(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias) ``` 这是MobileNetV3的大型版本,你也可以根据需要修改输入和输出通道数等参数来创建其他版本的MobileNetV3。

给出mobilenetv3代码示例,用torch实现

下面是一个基于torch实现的mobilenetv3代码示例: ```python import torch import torch.nn as nn class Hswish(nn.Module): def forward(self, x): relu6 = nn.ReLU6(inplace=True) return x * relu6(x + 3) / 6 class Hsigmoid(nn.Module): def forward(self, x): return nn.functional.relu6(x + 3) / 6 class ConvBNReLU(nn.Sequential): def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): padding = (kernel_size - 1) // 2 super(ConvBNReLU, self).__init__( nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False), nn.BatchNorm2d(out_planes), Hswish() ) class SqueezeExcitation(nn.Module): def __init__(self, in_planes, se_planes): super(SqueezeExcitation, self).__init__() self.se = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_planes, se_planes, 1), Hswish(), nn.Conv2d(se_planes, in_planes, 1), Hsigmoid() ) def forward(self, x): return x * self.se(x) class InvertedResidual(nn.Module): def __init__(self, inp, oup, stride, expand_ratio): super(InvertedResidual, self).__init__() hidden_dim = round(inp * expand_ratio) self.use_res_connect = stride == 1 and inp == oup layers = [] if expand_ratio != 1: layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) layers.extend([ ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), SqueezeExcitation(hidden_dim, round(inp * 0.25)), nn.Conv2d(hidden_dim, oup, 1, bias=False), nn.BatchNorm2d(oup), ]) self.conv = nn.Sequential(*layers) def forward(self, x): if self.use_res_connect: return x + self.conv(x) else: return self.conv(x) class MobileNetV3(nn.Module): def __init__(self, num_classes=1000, mode='large', width_mult=1.0): super(MobileNetV3, self).__init__() self.cfgs = [ # k, t, c, SE, s [3, 16, 16, 0, 1], [3, 64, 24, 0, 2], [3, 72, 24, 0, 1], [5, 72, 40, 1, 2], [5, 120, 40, 1, 1], [5, 120, 40, 1, 1], [3, 240, 80, 0, 2], [3, 200, 80, 0, 1], [3, 184, 80, 0, 1], [3, 184, 80, 0, 1], [3, 480, 112, 1, 1], [3, 672, 112, 1, 1], [5, 672, 160, 1, 2], [5, 960, 160, 0, 1], [5, 960, 160, 1, 1] ] if mode == 'large': interverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] last_channel = 1280 elif mode == 'small': interverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 192, 2, 2], [6, 320, 1, 1], ] last_channel = 1024 else: raise NotImplementedError input_channel = int(16 * width_mult) self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel # building first layer self.features = [ConvBNReLU(3, input_channel, stride=2)] # building inverted residual blocks for t, c, n, s in interverted_residual_setting: output_channel = int(c * width_mult) for i in range(n): if i == 0: self.features.append(InvertedResidual(input_channel, output_channel, s, t)) else: self.features.append(InvertedResidual(input_channel, output_channel, 1, t)) input_channel = output_channel # building last several layers self.features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1)) self.features.append(nn.AdaptiveAvgPool2d(1)) # make it nn.Sequential self.features = nn.Sequential(*self.features) # building classifier self.classifier = nn.Sequential( nn.Linear(self.last_channel, 1280), Hswish(), nn.Dropout(0.2), nn.Linear(1280, num_classes), ) self._initialize_weights() def forward(self, x): x = self.features(x) x = x.view(-1, self.last_channel) x = self.classifier(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias) ``` 以上是一个标准的mobilenetv3实现,包括了基本的模块,如InvertedResidual,SqueezeExcitation等等。同时也包括了两种模式的实现,即'mode=large'和'mode=small',以及相应的参数width_mult,用于控制模型的宽度。在实现时,我们参考了官方的实现以及其他开源实现,并进行了一些修改和调整,以便更好地适应我们的需求。

相关推荐

以下是一个使用 PyTorch 实现的 MobileNetV3 代码示例: python import torch.nn as nn import torch.nn.functional as F class MobileNetV3(nn.Module): def __init__(self, num_classes=1000, width_mult=1.0): super(MobileNetV3, self).__init__() # Define the MobileNetV3 architecture self.conv1 = nn.Conv2d(3, int(16 * width_mult), kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(int(16 * width_mult)) self.hs1 = nn.ReLU6(inplace=True) self.bottlenecks = nn.Sequential( Bottleneck(int(16 * width_mult), int(16 * width_mult), 3, 2, False, width_mult), Bottleneck(int(16 * width_mult), int(24 * width_mult), 3, 2, False, width_mult), Bottleneck(int(24 * width_mult), int(24 * width_mult), 3, 1, False, width_mult), Bottleneck(int(24 * width_mult), int(40 * width_mult), 5, 2, True, width_mult), Bottleneck(int(40 * width_mult), int(40 * width_mult), 5, 1, True, width_mult), Bottleneck(int(40 * width_mult), int(80 * width_mult), 3, 2, False, width_mult), Bottleneck(int(80 * width_mult), int(80 * width_mult), 3, 1, False, width_mult), Bottleneck(int(80 * width_mult), int(112 * width_mult), 5, 1, True, width_mult), Bottleneck(int(112 * width_mult), int(112 * width_mult), 5, 1, True, width_mult), Bottleneck(int(112 * width_mult), int(160 * width_mult), 5, 2, True, width_mult), Bottleneck(int(160 * width_mult), int(160 * width_mult), 5, 1, True, width_mult), Bottleneck(int(160 * width_mult), int(320 * width_mult), 3, 1, False, width_mult), ) self.conv2 = nn.Conv2d(int(320 * width_mult), int(1280 * width_mult), kernel_size=1, stride=1, padding=0, bias=False) self.bn2 = nn.BatchNorm2d(int(1280 * width_mult)) self.hs2 = nn.ReLU6(inplace=True) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.dropout = nn.Dropout(p=0.2, inplace=True) self.fc = nn.Linear(int(1280 * width_mult), num_classes) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.hs1(x) x = self.bottlenecks(x) x = self.conv2(x) x = self.bn2(x) x = self.hs2(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.dropout(x) x = self.fc(x) return x class Bottleneck(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, use_se, width_mult): super(Bottleneck, self).__init__() # Define the Bottleneck architecture mid_channels = int(out_channels / 6) self.conv1 = nn.Conv2d(in_channels, mid_channels, kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = nn.BatchNorm2d(mid_channels) self.hs1 = nn.ReLU6(inplace=True) self.conv2 = nn.Conv2d(mid_channels, mid_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, groups=mid_channels, bias=False) self.bn2 = nn.BatchNorm2d(mid_channels) self.hs2 = nn.ReLU6(inplace=True) if use_se: self.se = SEModule(mid_channels, width_mult) else: self.se = None self.conv3 = nn.Conv2d(mid_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False) self.bn3 = nn.BatchNorm2d(out_channels) self.hs3 = nn.ReLU6(inplace=True) self.use_res_connect = (stride == 1 and in_channels == out_channels) def forward(self, x): identity = x x = self.conv1(x) x = self.bn1(x) x = self.hs1(x) x = self.conv2(x) x = self.bn2(x) x = self.hs2(x) if self.se is not None: x = self.se(x) x = self.conv3(x) x = self.bn3(x) if self.use_res_connect: x += identity x = self.hs3(x) return x class SEModule(nn.Module): def __init__(self, channels, width_mult): super(SEModule, self).__init__() # Define the Squeeze-and-Excitation (SE) module architecture self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc1 = nn.Conv2d(channels, int(channels * width_mult), kernel_size=1, stride=1, padding=0, bias=True) self.hs1 = nn.ReLU6(inplace=True) self.fc2 = nn.Conv2d(int(channels * width_mult), channels, kernel_size=1, stride=1, padding=0, bias=True) self.hs2 = nn.Sigmoid() def forward(self, x): identity = x x = self.avgpool(x) x = self.fc1(x) x = self.hs1(x) x = self.fc2(x) x = self.hs2(x) x = identity * x return x 这是一个基于 MobileNetV3 的轻量级卷积神经网络,可以用于图像分类等任务。
这里是使用PyTorch实现的MobileNetV2代码示例: python import torch.nn as nn class MobileNetV2(nn.Module): def __init__(self, num_classes=1000, input_size=224): super(MobileNetV2, self).__init__() self.num_classes = num_classes self.input_size = input_size self.features = nn.Sequential( nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(32), nn.ReLU(inplace=True), nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(32), nn.ReLU(inplace=True), nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.Conv2d(128, 64, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 96, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(96), nn.ReLU(inplace=True), nn.Conv2d(96, 256, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 192, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(192), nn.ReLU(inplace=True), nn.Conv2d(192, 512, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(1024), nn.ReLU(inplace=True), nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(1024), nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d((1, 1)), ) self.classifier = nn.Sequential( nn.Dropout(0.2), nn.Linear(1024, self.num_classes), ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x 此代码实现了MobileNetV2模型,包括输入大小和分类数。该模型的特征提取器由一系列卷积层和批归一化层组成,带有ReLU激活函数。分类器由一个dropout层和一个全连接层组成。在前向传递过程中,输入图像首先经过特征提取器,然后通过分类器输出预测结果。
### 回答1: Mobilenetv1是一种轻量级的卷积神经网络,适用于移动设备和嵌入式设备。在PyTorch中,可以使用torchvision.models.mobilenet_v1来加载预训练的模型,也可以使用该模型的代码进行自定义训练和推理。以下是一个简单的Mobilenetv1代码示例: import torch import torch.nn as nn import torch.nn.functional as F class MobileNetV1(nn.Module): def __init__(self, num_classes=100): super(MobileNetV1, self).__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(32) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(64) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(128) self.conv4 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False) self.bn4 = nn.BatchNorm2d(128) self.conv5 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False) self.bn5 = nn.BatchNorm2d(256) self.conv6 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False) self.bn6 = nn.BatchNorm2d(256) self.conv7 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False) self.bn7 = nn.BatchNorm2d(512) self.conv8 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) self.bn8 = nn.BatchNorm2d(512) self.conv9 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) self.bn9 = nn.BatchNorm2d(512) self.conv10 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) self.bn10 = nn.BatchNorm2d(512) self.conv11 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) self.bn11 = nn.BatchNorm2d(512) self.conv12 = nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, bias=False) self.bn12 = nn.BatchNorm2d(1024) self.conv13 = nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, bias=False) self.bn13 = nn.BatchNorm2d(1024) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(1024, num_classes) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.conv3(x) x = self.bn3(x) x = self.relu(x) x = self.conv4(x) x = self.bn4(x) x = self.relu(x) x = self.conv5(x) x = self.bn5(x) x = self.relu(x) x = self.conv6(x) x = self.bn6(x) x = self.relu(x) x = self.conv7(x) x = self.bn7(x) x = self.relu(x) x = self.conv8(x) x = self.bn8(x) x = self.relu(x) x = self.conv9(x) x = self.bn9(x) x = self.relu(x) x = self.conv10(x) x = self.bn10(x) x = self.relu(x) x = self.conv11(x) x = self.bn11(x) x = self.relu(x) x = self.conv12(x) x = self.bn12(x) x = self.relu(x) x = self.conv13(x) x = self.bn13(x) x = self.relu(x) x = self.avgpool(x) x = x.view(x.size(), -1) x = self.fc(x) return x 在这个代码中,我们定义了一个名为MobileNetV1的类,它继承自nn.Module。在__init__函数中,我们定义了网络的各个层,包括卷积层、批归一化层和ReLU激活函数。在forward函数中,我们按照顺序将输入x传递到各个层中,并最终输出分类结果。这个代码可以用于自定义训练和推理,也可以作为torchvision.models.mobilenet_v1的基础代码进行修改和扩展。 ### 回答2: MobileNet V1是一种轻量级深度学习模型,被广泛应用于移动设备和嵌入式设备上进行图像分类任务。在PyTorch中,我们可以使用现成的MobileNet V1代码,快速搭建模型并进行训练和预测。 MobileNet V1的PyTorch代码实现,可以在PyTorch的官方Github仓库中找到。该代码库提供了两种不同版本的MobileNet V1模型,包括预先训练好的模型和用于自定义训练的模型。这些代码使用了PyTorch的函数和类,以及提供了许多用于优化和调整模型的工具。 MobileNet V1代码使用了深度可分离卷积(Depthwise Separable Convolution)来减少模型的计算和内存需求。这种卷积以一种新颖的方式处理特征图,将必要的计算分散到每个通道上。此外,代码还使用了全局平均池化层,将每个特征图替换为其平均值,从而减少了特征图的大小和维度。 使用PyTorch的MobileNet V1代码非常简单。您只需要调用相应的函数来定义和构建模型,并在训练和预测时向其提供相应的输入和输出张量即可。该代码也提供了各种用于数据增强、优化和调整模型的工具,方便用户进行优化和调整。 综上所述,MobileNet V1的PyTorch代码是一种功能强大、易于使用的深度学习工具,它能够在移动设备和嵌入式设备上快速地实现图像分类任务。无论您是初学者还是有经验的深度学习专业人员,该代码库都是一个必不可少的工具。 ### 回答3: MobileNetV1是一款具有高效网络架构的深度学习模型,它可以用于图像分类、目标检测等应用场景。该模型特别适用于具有限制计算资源的移动设备。 在PyTorch中,MobileNetV1代码可以通过下面的方式进行实现: 1. 安装PyTorch库,并导入需要使用的模块: import torch import torch.nn as nn import torch.nn.functional as F 2. 定义MobileNetV1中的基本模块: class ConvBNReLU(nn.Module): def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): super(ConvBNReLU, self).__init__() padding = (kernel_size - 1) // 2 self.conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False) self.bn = nn.BatchNorm2d(out_planes) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) return x 3. 定义MobileNetV1的主体结构: class MobileNetV1(nn.Module): def __init__(self, num_classes=1000): super(MobileNetV1, self).__init__() self.conv1 = ConvBNReLU(3, 32, stride=2) self.dw1 = nn.Sequential( ConvBNReLU(32, 32, groups=32), nn.Conv2d(32, 64, 1, 1, 0, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), ) self.dw2 = nn.Sequential( ConvBNReLU(64, 64, stride=2, groups=64), nn.Conv2d(64, 128, 1, 1, 0, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), ) self.dw3 = nn.Sequential( ConvBNReLU(128, 128, stride=2, groups=128), nn.Conv2d(128, 256, 1, 1, 0, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), ) self.dw4 = nn.Sequential( ConvBNReLU(256, 256, stride=2, groups=256), nn.Conv2d(256, 512, 1, 1, 0, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d(1) ) self.linear = nn.Linear(512, num_classes) def forward(self, x): x = self.conv1(x) x = self.dw1(x) x = self.dw2(x) x = self.dw3(x) x = self.dw4(x) x = x.view(x.size(0), -1) x = self.linear(x) return x 在上述代码中,MobileNetV1的主体结构由5个“深度可分离卷积”组成。这些卷积层的参数量很小,并且可以提高计算效率。每个“深度可分离卷积”由一个深度卷积和一个1×1卷积层组成。 最后,使用MobileNetV1可以进行图像分类任务训练,示例如下: # create a MobileNetV1 model model = MobileNetV1(num_classes=10) # define a loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # train the model for epoch in range(10): for i, (images, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() if (i+1) % 100 == 0: print ('Epoch [{}/{}], Batch [{}/{}], Loss: {:.4f}' .format(epoch+1, 10, i+1, len(train_loader), loss.item())) # test the model with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the model on the test images: {} %'.format(100 * correct / total)) 在这个例子中,我们定义了一个包含10类的图像分类任务。通过使用PyTorch实现的MobileNetV1模型,我们可以训练并测试该模型在这个任务上的性能。
### 回答1: MobileNetV3 是一种轻量级的卷积神经网络,适用于移动设备和嵌入式设备上的图像分类任务。它采用了一些新的设计策略,如倒残差结构和自适应宽度等,以提高模型的准确性和效率。如果您需要更详细的信息,可以查看相关的论文和代码实现。 ### 回答2: MobileNetV3 是一种轻量级的卷积神经网络架构,用于在移动设备和嵌入式系统上进行实时图像分类和目标检测任务。它是MobileNet系列的第三个版本,其设计目标是在保持轻量级的同时提供更高的精确度和更好的性能。 MobileNetV3通过结合一系列的优化策略和网络组件来实现高效的模型设计。首先,它使用了多种类型的卷积层,包括普通卷积、深度可分离卷积和线性Bottleneck卷积,以在不同层级上平衡模型的精度和计算代价。此外,MobileNetV3还引入了h-swish激活函数和SE模块,以增强网络的表达能力和特征重要性的捕捉能力。 在MobileNetV3中,还有一种名为Searchable Transformer的自动搜索方法,用于高效地搜索和调整网络架构。该方法通过控制搜索空间和模型复杂度,自动选择最佳的网络结构,从而实现更好的性能表现。这种自动搜索方法在保持模型轻量化的同时,还可以适应各种应用场景和硬件平台的需求。 总的来说,MobileNetV3是一个优秀的轻量级神经网络模型,适用于移动设备和嵌入式系统上的实时图像分类和目标检测任务。它通过多种优化策略和网络组件的结合,提供了更高的精确度和更好的性能。此外,它还采用了搜索方法来自动优化网络结构,以满足不同应用场景的需求。 ### 回答3: MobileNetV3 是一种轻量级的卷积神经网络模型,用于图像分类和目标检测任务。它是Google在MobileNet系列的最新版本,旨在提供更高的准确性和更快的推断速度。 MobileNetV3 主要引入了两个新的技术:倒残差结构(inverted residuals)和线性注意力模块(linear bottlenecks)。倒残差结构能够在保持网络深度和计算效率的基础上提高神经网络的表达能力,从而提高准确性。而线性注意力模块则可以动态地调整网络在不同特征层上的注意力分配,以更好地适应输入图像的特征分布。 MobileNetV3 有不同的变体,分别面向不同的平台和应用场景。其中,MobileNetV3 Large 适合要求较高准确性但计算资源相对充足的场景,而MobileNetV3 Small 则更适合要求推断速度较快的场景。 相比于先前的MobileNet版本,MobileNetV3 在准确性和推断速度之间取得了更好的平衡。基于此,MobileNetV3 可以被广泛应用于嵌入式设备、移动端应用和其他计算资源有限的场景,以提供高质量的图像分类和目标检测能力。
将MobileNetV3和YOLOv5结合起来需要进行以下步骤: 1. 首先,需要下载YOLOv5的代码和预训练权重,以及MobileNetV3的代码和预训练权重。 2. 接着,需要在YOLOv5中修改模型结构,以便将MobileNetV3作为YOLOv5的特征提取器。可以在YOLOv5的models/yolov5s.py文件中进行修改,将原来的卷积层替换为MobileNetV3的卷积层。 3. 在训练时,需要将YOLOv5的训练数据集进行转换,以适应MobileNetV3的输入尺寸。可以使用YOLOv5的datasets.py文件中的resize方法进行转换。 4. 最后,在训练时,需要将YOLOv5的训练代码中的特征提取器替换为MobileNetV3,并按照MobileNetV3的训练方式进行训练。 下面是一个简单的参考代码,仅供参考: python import torch import torch.nn as nn import torchvision.models as models from models.common import Conv, DWConv class MobileNetV3(nn.Module): def __init__(self, width_mult=1.0): super(MobileNetV3, self).__init__() self.inplanes = 16 self.cfgs = [ # k, exp, c, se, nl, s, [3, 16, 16, False, 'relu', 1], [3, 64, 24, False, 'relu', 2], [3, 72, 24, False, 'relu', 1], [5, 72, 40, True, 'relu', 2], [5, 120, 40, True, 'relu', 1], [5, 120, 40, True, 'relu', 1], [3, 240, 80, False, 'hswish', 2], [3, 200, 80, False, 'hswish', 1], [3, 184, 80, False, 'hswish', 1], [3, 184, 80, False, 'hswish', 1], [3, 480, 112, True, 'hswish', 1], [3, 672, 112, True, 'hswish', 1], [5, 672, 160, True, 'hswish', 2], [5, 960, 160, True, 'hswish', 1], [5, 960, 160, True, 'hswish', 1], ] # head self.conv1 = Conv(3, self.inplanes, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(self.inplanes) self.hswish = Hswish(inplace=True) # body self.features = nn.ModuleList([]) for k, exp, c, se, nl, s in self.cfgs: outplanes = int(c * width_mult) self.features.append(InvertedResidual(self.inplanes, outplanes, k, s, exp, se, nl)) self.inplanes = outplanes # tail self.conv2 = Conv(self.inplanes, 960, kernel_size=1, stride=1, padding=0, bias=False) self.bn2 = nn.BatchNorm2d(960) self.hswish2 = Hswish(inplace=True) def forward(self, x): # head x = self.conv1(x) x = self.bn1(x) x = self.hswish(x) # body for f in self.features: x = f(x) # tail x = self.conv2(x) x = self.bn2(x) x = self.hswish2(x) return x class YOLOv5(nn.Module): def __init__(self, num_classes=80): super(YOLOv5, self).__init__() self.head = Conv(960, 1024, 3, stride=1, padding=1) self.body = nn.Sequential( Residual(1024, 512, 1), Conv(512, 256, 1), nn.Upsample(scale_factor=2, mode='nearest'), Residual(512, 256, 1), Conv(256, 128, 1), nn.Upsample(scale_factor=2, mode='nearest'), Residual(256, 128, 1), Conv(128, 64, 1), nn.Upsample(scale_factor=2, mode='nearest'), Residual(128, 64, 1), ) self.tail = nn.Conv2d(64, 3 * (5 + num_classes), 1) def forward(self, x): x = self.head(x) x = self.body(x) x = self.tail(x) return x if __name__ == '__main__': device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # load MobileNetV3 mobilenetv3 = MobileNetV3().to(device) mobilenetv3.load_state_dict(torch.load('mobilenetv3_weights.pth')) # load YOLOv5 yolov5 = YOLOv5().to(device) yolov5.load_state_dict(torch.load('yolov5_weights.pth')) # replace feature extractor of YOLOv5 with MobileNetV3 yolov5.head = mobilenetv3.conv2 yolov5.body = mobilenetv3.features # train YOLOv5 with MobileNetV3 feature extractor train_dataset = ... train_loader = ... optimizer = ... loss_fn = ... for epoch in range(num_epochs): for batch_idx, (data, targets) in enumerate(train_loader): data, targets = data.to(device), targets.to(device) optimizer.zero_grad() outputs = yolov5(data) loss = loss_fn(outputs, targets) loss.backward() optimizer.step()
以下是一个使用 PyTorch 实现的 MobileNetV3 网络的代码示例: python import torch import torch.nn as nn class SqueezeExcitation(nn.Module): def __init__(self, in_channels, se_ratio=.25): super(SqueezeExcitation, self).__init__() self.pool = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(in_channels, in_channels // 4, kernel_size=1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(in_channels // 4, in_channels, kernel_size=1, bias=False) self.sigmoid = nn.Sigmoid() self.se_ratio = se_ratio def forward(self, x): out = self.pool(x) out = self.fc1(out) out = self.relu(out) out = self.fc2(out) out = self.sigmoid(out) return x * out class MobileNetV3Block(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, use_se=True, nl='HS'): super(MobileNetV3Block, self).__init__() self.use_se = use_se self.stride = stride self.in_channels = in_channels self.out_channels = out_channels assert nl in ['HS', 'RE'] self.nl = nl padding = (kernel_size - 1) // 2 self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size, stride, padding, groups=in_channels, bias=False) self.bn1 = nn.BatchNorm2d(in_channels) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(in_channels, out_channels, 1, 1, , bias=False) self.bn2 = nn.BatchNorm2d(out_channels) if use_se: self.se = SqueezeExcitation(out_channels) self.relu2 = nn.ReLU(inplace=True) def forward(self, x): out = self.conv1(x) out = self.bn1(out) if self.nl == 'HS': out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) if self.use_se: out = self.se(out) if self.nl == 'RE': out = self.relu1(out) if self.stride == 1 and self.in_channels == self.out_channels: out = x + out return out class MobileNetV3(nn.Module): def __init__(self, num_classes=100, mode='large', multiplier=1.): super(MobileNetV3, self).__init__() assert mode in ['large', 'small'] if mode == 'large': layers = [ # in_channels, out_channels, kernel_size, stride, use_se, nl MobileNetV3Block(3, int(16 * multiplier), 3, 1, False, 'RE'), MobileNetV3Block(int(16 * multiplier), int(16 * multiplier), 3, 2, False, 'RE'), MobileNetV3Block(int(16 * multiplier), int(24 * multiplier), 3, 1, False, 'RE'), MobileNetV3Block(int(24 * multiplier), int(24 * multiplier), 3, 1, False, 'RE'), MobileNetV3Block(int(24 * multiplier), int(40 * multiplier), 5, 2, True, 'RE'), MobileNetV3Block(int(40 * multiplier), int(40 * multiplier), 5, 1, True, 'RE'), MobileNetV3Block(int(40 * multiplier), int(40 * multiplier), 5, 1, True, 'RE'), MobileNetV3Block(int(40 * multiplier), int(80 * multiplier), 3, 2, False, 'HS'), MobileNetV3Block(int(80 * multiplier), int(80 * multiplier), 3, 1, False, 'HS'), MobileNetV3Block(int(80 * multiplier), int(80 * multiplier), 3, 1, False, 'HS'), MobileNetV3Block(int(80 * multiplier), int(112 * multiplier), 3, 1, True, 'HS'), MobileNetV3Block(int(112 * multiplier), int(112 * multiplier), 3, 1, True, 'HS'), MobileNetV3Block(int(112 * multiplier), int(160 * multiplier), 5, 2, True, 'HS'), MobileNetV3Block(int(160 * multiplier), int(160 * multiplier), 5, 1, True, 'HS'), MobileNetV3Block(int(160 * multiplier), int(160 * multiplier), 5, 1, True, 'HS'), MobileNetV3Block(int(160 * multiplier), int(320 * multiplier), 3, 1, False, 'HS'), nn.Conv2d(int(320 * multiplier), int(128 * multiplier), 1, 1, , bias=False), nn.BatchNorm2d(int(128 * multiplier)), nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d(1), nn.Conv2d(int(128 * multiplier), num_classes, 1, 1, , bias=True), ] else: layers = [ MobileNetV3Block(3, int(16 * multiplier), 3, 2, True, 'RE'), MobileNetV3Block(int(16 * multiplier), int(24 * multiplier), 3, 2, False, 'RE'), MobileNetV3Block(int(24 * multiplier), int(24 * multiplier), 3, 1, False, 'RE'), MobileNetV3Block(int(24 * multiplier), int(40 * multiplier), 5, 2, True, 'RE'), MobileNetV3Block(int(40 * multiplier), int(40 * multiplier), 5, 1, True, 'RE'), MobileNetV3Block(int(40 * multiplier), int(40 * multiplier), 5, 1, True, 'RE'), MobileNetV3Block(int(40 * multiplier), int(48 * multiplier), 5, 1, True, 'HS'), MobileNetV3Block(int(48 * multiplier), int(48 * multiplier), 5, 1, True, 'HS'), MobileNetV3Block(int(48 * multiplier), int(96 * multiplier), 5, 2, True, 'HS'), MobileNetV3Block(int(96 * multiplier), int(96 * multiplier), 5, 1, True, 'HS'), MobileNetV3Block(int(96 * multiplier), int(96 * multiplier), 5, 1, True, 'HS'), nn.Conv2d(int(96 * multiplier), int(576 * multiplier), 1, 1, , bias=False), nn.BatchNorm2d(int(576 * multiplier)), nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d(1), nn.Conv2d(int(576 * multiplier), num_classes, 1, 1, , bias=True), ] self.layers = nn.Sequential(*layers) def forward(self, x): out = self.layers(x) out = out.view(out.size(), -1) return out 希望这个代码示例能对你有所帮助!
以下是一个简单的 MobileNetV1 的 PyTorch 代码,用于训练 CIFAR10 数据集: python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms # 定义 MobileNetV1 模型 class MobileNetV1(nn.Module): def __init__(self, num_classes=10): super(MobileNetV1, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(32), nn.ReLU(inplace=True), nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(1024), nn.ReLU(inplace=True), nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(1024), nn.ReLU(inplace=True), nn.AvgPool2d(2) ) self.classifier = nn.Linear(1024, num_classes) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x # 加载 CIFAR10 数据集 transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4) # 训练模型 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") net = MobileNetV1().to(device) for epoch in range(200): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data[0].to(device), data[1].to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 print('Finished Training') 希望这个代码对你有所帮助!

最新推荐

2023年全球聚甘油行业总体规模.docx

2023年全球聚甘油行业总体规模.docx

java web Session 详解

java web Session 详解

超声波雷达驱动(Elmos524.03&Elmos524.09)

超声波雷达驱动(Elmos524.03&Elmos524.09)

ROSE: 亚马逊产品搜索的强大缓存

89→ROSE:用于亚马逊产品搜索的强大缓存Chen Luo,Vihan Lakshman,Anshumali Shrivastava,Tianyu Cao,Sreyashi Nag,Rahul Goutam,Hanqing Lu,Yiwei Song,Bing Yin亚马逊搜索美国加利福尼亚州帕洛阿尔托摘要像Amazon Search这样的产品搜索引擎通常使用缓存来改善客户用户体验;缓存可以改善系统的延迟和搜索质量。但是,随着搜索流量的增加,高速缓存不断增长的大小可能会降低整体系统性能。此外,在现实世界的产品搜索查询中广泛存在的拼写错误、拼写错误和冗余会导致不必要的缓存未命中,从而降低缓存 在本文中,我们介绍了ROSE,一个RO布S t缓存E,一个系统,是宽容的拼写错误和错别字,同时保留传统的缓存查找成本。ROSE的核心组件是一个随机的客户查询ROSE查询重写大多数交通很少流量30X倍玫瑰深度学习模型客户查询ROSE缩短响应时间散列模式,使ROSE能够索引和检

java中mysql的update

Java中MySQL的update可以通过JDBC实现。具体步骤如下: 1. 导入JDBC驱动包,连接MySQL数据库。 2. 创建Statement对象。 3. 编写SQL语句,使用update关键字更新表中的数据。 4. 执行SQL语句,更新数据。 5. 关闭Statement对象和数据库连接。 以下是一个Java程序示例,用于更新MySQL表中的数据: ```java import java.sql.*; public class UpdateExample { public static void main(String[] args) { String

JavaFX教程-UI控件

JavaFX教程——UI控件包括:标签、按钮、复选框、选择框、文本字段、密码字段、选择器等

社交网络中的信息完整性保护

141社交网络中的信息完整性保护摘要路易斯·加西亚-普埃约Facebook美国门洛帕克lgp@fb.com贝尔纳多·桑塔纳·施瓦茨Facebook美国门洛帕克bsantana@fb.com萨曼莎·格思里Facebook美国门洛帕克samguthrie@fb.com徐宝轩Facebook美国门洛帕克baoxuanxu@fb.com信息渠道。这些网站促进了分发,Facebook和Twitter等社交媒体平台在过去十年中受益于大规模采用,反过来又助长了传播有害内容的可能性,包括虚假和误导性信息。这些内容中的一些通过用户操作(例如共享)获得大规模分发,以至于内容移除或分发减少并不总是阻止其病毒式传播。同时,社交媒体平台实施解决方案以保持其完整性的努力通常是不透明的,导致用户不知道网站上发生的任何完整性干预。在本文中,我们提出了在Facebook News Feed中的内容共享操作中添加现在可见的摩擦机制的基本原理,其设计和实现挑战,以�

fluent-ffmpeg转流jsmpeg

以下是使用fluent-ffmpeg和jsmpeg将rtsp流转换为websocket流的示例代码: ```javascript const http = require('http'); const WebSocket = require('ws'); const ffmpeg = require('fluent-ffmpeg'); const server = http.createServer(); const wss = new WebSocket.Server({ server }); wss.on('connection', (ws) => { const ffmpegS

Python单选题库(2).docx

Python单选题库(2) Python单选题库(2)全文共19页,当前为第1页。Python单选题库(2)全文共19页,当前为第1页。Python单选题库 Python单选题库(2)全文共19页,当前为第1页。 Python单选题库(2)全文共19页,当前为第1页。 Python单选题库 一、python语法基础 1、Python 3.x 版本的保留字总数是 A.27 B.29 C.33 D.16 2.以下选项中,不是Python 语言保留字的是 A while B pass C do D except 3.关于Python 程序格式框架,以下选项中描述错误的是 A Python 语言不采用严格的"缩进"来表明程序的格式框架 B Python 单层缩进代码属于之前最邻近的一行非缩进代码,多层缩进代码根据缩进关系决定所属范围 C Python 语言的缩进可以采用Tab 键实现 D 判断、循环、函数等语法形式能够通过缩进包含一批Python 代码,进而表达对应的语义 4.下列选项中不符合Python语言变量命名规则的是 A TempStr B I C 3_1 D _AI 5.以下选项中

利用脑信号提高阅读理解的信息检索模型探索

380∗→利用脑信号更好地理解人类阅读理解叶紫怡1、谢晓辉1、刘益群1、王志宏1、陈雪松1、张敏1、马少平11北京国家研究中心人工智能研究所计算机科学与技术系清华大学信息科学与技术学院,中国北京yeziyi1998@gmail.com,xiexh_thu@163.com,yiqunliu@tsinghua.edu.cn,wangzhh629@mail.tsinghua.edu.cn,,chenxuesong1128@163.com,z-m@tsinghua.edu.cn, msp@tsinghua.edu.cn摘要阅读理解是一个复杂的认知过程,涉及到人脑的多种活动。然而,人们对阅读理解过程中大脑的活动以及这些认知活动如何影响信息提取过程知之甚少此外,随着脑成像技术(如脑电图(EEG))的进步,可以几乎实时地收集大脑信号,并探索是否可以将其用作反馈,以促进信息获取性能。在本文中,我们精心设计了一个基于实验室的用户研究,以调查在阅读理解过程中的大脑活动。我们的研究结果表明,不同类型�