self.Phiweight = nn.Parameter(init.xavier_normal_(torch.Tensor(self.n_input, 1, self.patch_size, self.patch_size)))
时间: 2024-04-28 09:25:56 浏览: 95
这段代码是用来初始化一个可学习的参数 self.Phiweight,它是一个四维的张量(tensor),形状为 (n_input, 1, patch_size, patch_size)。其中,n_input 是输入数据的通道数,patch_size 是每个局部区域的大小。这个参数通常被用于局部感知操作,例如卷积神经网络中的卷积操作。init.xavier_normal_ 是一个参数初始化方法(Xavier初始化),它可以使得参数的初始值能够有效地传递梯度,从而加速模型的训练。
相关问题
class AAMsoftmax(nn.Module): def __init__(self, n_class, m, s): super(AAMsoftmax, self).__init__() self.m = m self.s = s self.weight = torch.nn.Parameter(torch.FloatTensor(n_class, 256), requires_grad=True) self.ce = nn.CrossEntropyLoss() nn.init.xavier_normal_(self.weight, gain=1) self.cos_m = math.cos(self.m) self.sin_m = math.sin(self.m) self.th = math.cos(math.pi - self.m) self.mm = math.sin(math.pi - self.m) * self.m def forward(self, x, label=None): cosine = F.linear(F.normalize(x), F.normalize(self.weight)) sine = torch.sqrt((1.0 - torch.mul(cosine, cosine)).clamp(0, 1)) phi = cosine * self.cos_m - sine * self.sin_m phi = torch.where((cosine - self.th) > 0, phi, cosine - self.mm) one_hot = torch.zeros_like(cosine) one_hot.scatter_(1, label.view(-1, 1), 1) output = (one_hot * phi) + ((1.0 - one_hot) * cosine) output = output * self.s loss = self.ce(output, label) prec1 = accuracy(output.detach(), label.detach(), topk=(1,))[0]
这段代码是一个 PyTorch 的模型实现,实现了一个 AAMsoftmax 的分类器。这个分类器的输入是一个 x 矩阵,代表输入的特征,label 是一个张量,代表输入的标签。该模型的 forward 函数中,首先对输入的特征 x 进行归一化,然后通过线性变换将 x 投影到一个维度为 256 的空间中,得到一个 cosine 矩阵。接下来通过一系列的数学计算,将 cosine 转化为一个 phi 矩阵,使得在 phi 矩阵上的分类间的 margin 更大,以提高分类的精度。最后,将 phi 矩阵和原始的 cosine 矩阵加权相加,得到最终的输出。同时,计算交叉熵损失和精度,并返回。
if use_bottleneck == True: self.bottleneck = nn.Sequential( nn.Linear(n_hiddens[-1], bottleneck_width), nn.Linear(bottleneck_width, bottleneck_width), nn.BatchNorm1d(bottleneck_width), nn.ReLU(), nn.Dropout(), ) self.bottleneck[0].weight.data.normal_(0, 0.005) self.bottleneck[0].bias.data.fill_(0.1) self.bottleneck[1].weight.data.normal_(0, 0.005) self.bottleneck[1].bias.data.fill_(0.1) self.fc = nn.Linear(bottleneck_width, n_output) torch.nn.init.xavier_normal_(self.fc.weight) else: self.fc_out = nn.Linear(n_hiddens[-1], self.n_output)
这段代码是在模型中添加bottleneck层和全连接层。如果use_bottleneck为True,则会创建一个包含线性层、批归一化层、激活函数层和Dropout层的Sequential模块,并将其赋值给self.bottleneck。同时,还会创建一个线性层self.fc用于最终的预测。
在创建bottleneck层时,使用nn.Linear函数定义了两个线性层,输入维度为n_hiddens[-1],输出维度为bottleneck_width。然后,使用nn.BatchNorm1d对输出进行批归一化,使用nn.ReLU作为激活函数,使用nn.Dropout进行随机失活。
接下来,通过.data属性设置权重和偏置的初始值。权重初始化为服从均值为0、标准差为0.005的正态分布,偏置初始化为常数0.1。
如果use_bottleneck为False,则直接创建一个线性层self.fc_out,输入维度为n_hiddens[-1],输出维度为n_output。
无论使用bottleneck还是直接使用全连接层,最后都会进行权重初始化。对于使用bottleneck的模型,使用torch.nn.init.xavier_normal_函数对self.fc的权重进行Xavier正态分布初始化。
阅读全文