class Block(nn.Module): def __init__(self, in_planes, out_planes, expansion, stride): super(Block, self).__init__() self.stride = stride planes = expansion * in_planes self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, groups=planes, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, out_planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_planes) self.shortcut = nn.Sequential() if stride == 1 and in_planes != out_planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_planes) )
时间: 2024-04-09 18:31:39 浏览: 238
这是一个基本的残差块(Residual Block)类。在初始化函数中,它接收输入通道数(in_planes)、输出通道数(out_planes)、扩展倍数(expansion)和步长(stride)作为参数。在初始化过程中,它定义了一系列的卷积层和批归一化层。
具体来说,它包含以下几个层:
- self.conv1:一个1x1的卷积层,用于对输入进行通道数的转换,将输入通道数变为扩展倍数乘以输入通道数。
- self.bn1:对conv1的输出进行批归一化操作。
- self.conv2:一个3x3的卷积层,用于在空间上对特征进行卷积操作。
- self.bn2:对conv2的输出进行批归一化操作。
- self.conv3:一个1x1的卷积层,用于将特征映射的通道数变为输出通道数。
- self.bn3:对conv3的输出进行批归一化操作。
此外,如果步长为1并且输入通道数与输出通道数不相等,则会添加一个shortcut(短连接)来使输入与输出形状匹配。shortcut由一个包含1x1卷积层和批归一化层的Sequential组成。
这个残差块类用于构建ResNet等网络结构。
相关问题
class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, rate=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=rate, dilation=rate, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride解释
这段代码定义了一个 ResNet 中的 Bottleneck 模块,它是由三个卷积层组成的。第一个卷积层使用 1x1 的卷积核将输入通道数 inplanes 转换为 planes,第二个卷积层使用 3x3 的卷积核进行卷积操作,并且可能会进行下采样操作,stride 控制下采样的步长,padding 和 dilation 分别控制了卷积核在空间维度上的填充和空洞卷积操作。第三个卷积层使用 1x1 的卷积核将输出通道数转换为 planes*4,expansion 参数控制了扩张倍数。每个卷积层后面都跟着一个 BatchNorm 层和 ReLU 激活函数。downsample 参数用于进行下采样操作,stride 控制下采样的步长。这个模块的主要作用是提取特征,并且通过下采样操作进行特征压缩。
def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers)
这是一个深度神经网络的类中的一个私有方法,用于构建网络的一层。其中,block 代表网络的基本块,planes 代表输出通道数,blocks 代表构建的基本块数量,stride 代表步长,dilate 代表是否使用膨胀卷积。norm_layer 代表归一化层,downsample 代表下采样层,previous_dilation 代表上一层的膨胀率。
首先,如果 dilate 为 True,就将膨胀率乘以步长,并将步长设为 1。如果步长不为 1,或者输入通道数不等于输出通道数乘以基本块的扩展系数,就构建一个下采样层 downsample。然后,将第一个基本块加入到 layers 列表中,并将输入通道数设为输出通道数乘以基本块的扩展系数。最后,使用 for 循环构建剩下的基本块,并将它们加入到 layers 列表中。最后,返回一个 nn.Sequential 对象,其中包含所有的基本块。
阅读全文