t检验中对p值进行fdr校正的步骤
时间: 2024-04-18 15:27:04 浏览: 402
pval_adjust:调整多个比较的p值
5星 · 资源好评率100%
在进行t检验后,如果你希望对p值进行FDR(False Discovery Rate)校正,可以按照以下步骤进行:
1. 收集t检验的所有p值。
2. 将这些p值按升序进行排序。
3. 计算每个p值对应的FDR校正后的阈值,可以使用Benjamini-Hochberg方法来计算。具体计算步骤如下:
- 首先,确定你希望的期望错误发现率(FDR阈值),通常为0.05。
- 然后,计算每个p值对应的调整后的阈值,使用以下公式:调整的阈值 = (i / n) * FDR阈值 / c
其中,i是排序后的p值的位置(从1开始),n是总的p值数量,c是排序后的p值的位置与p值的乘积的总和。
- 注意:如果计算得到的调整阈值大于1,则将其设置为1。
4. 比较每个p值与其对应的调整阈值。如果某个p值小于等于其对应的调整阈值,则认为该结果是显著的。
5. 对于通过FDR校正显著的结果,你可以标记它们或进一步分析。
通过这些步骤,你可以对t检验的p值进行FDR校正,并控制错误发现率,以获得更可靠的结果。
阅读全文