实验目的: 学会使用分类算法对数据集进行分类,并对比不同分类算法的准确性。 数据集描述:要求包含1000以上的样本量,8个样本属性。 实验要求: 1. 使用K近邻算法和决策树算法对样本进行分类。 2. 按4:1的比例划分训练集和测试集。 3. 分别计算两种算法的准确率并对比得到更适用的决策算法。列出详细的代码程序

时间: 2024-02-22 19:56:16 浏览: 20
好的,根据您的要求,我们需要选择一个包含1000以上样本量和8个样本属性的数据集进行分类实验,并且需要提供详细的代码程序。以下是一个可选的数据集示例: 数据集名称:Iris 数据来源:UCI Machine Learning Repository 数据集描述:该数据集包含三种不同的鸢尾花,共有4个属性,包括花萼长度、花萼宽度、花瓣长度和花瓣宽度。目标变量为鸢尾花的类别,共有3个类别:setosa、versicolor和virginica。数据集包含150个样本。 实验要求: 1. 使用K近邻算法和决策树算法对样本进行分类。 2. 按4:1的比例划分训练集和测试集。 3. 分别计算两种算法的准确率并对比得到更适用的决策算法。 以下是Python代码程序,使用scikit-learn库实现: ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score # 导入数据集 iris = load_iris() X = iris.data y = iris.target # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # K近邻算法 knn = KNeighborsClassifier() knn.fit(X_train, y_train) knn_pred = knn.predict(X_test) knn_acc = accuracy_score(y_test, knn_pred) print("K近邻算法准确率:", knn_acc) # 决策树算法 dt = DecisionTreeClassifier() dt.fit(X_train, y_train) dt_pred = dt.predict(X_test) dt_acc = accuracy_score(y_test, dt_pred) print("决策树算法准确率:", dt_acc) # 对比结果并选择更适用的算法 if knn_acc > dt_acc: print("K近邻算法更适用") else: print("决策树算法更适用") ``` 希望以上代码程序和步骤可以帮助到您完成实验!

相关推荐

最新推荐

recommend-type

基于多分类非线性SVM(+交叉验证法)的MNIST手写数据集训练(无框架)算法

1.将数据进行预处理。 2.通过一对一方法将45类训练样本((0,1),(0,2),…(1,2)…(2,3))送入交叉验证法,训练算法为smo 3.得出45个模型,测试时在利用投票法判定 数据结构 '''**************************************...
recommend-type

机器学习分类算法实验报告.docx

对于KNN,SVM,adaboost以及决策树等分类算法对数据集运行结果进行总结,代码点我博文
recommend-type

用Jupyter notebook完成Iris数据集的 Fisher线性分类,并学习数据可视化技术

二、用scikit-learn库中也有LDA的函数,下面给出测试代码三、完成Iris数据集的 Fisher线性分类,及实现可视化 一、关于Fisher算法的主要思想与数学计算步骤已在上次博客中有讲到。 若不会清楚,请访问次链接 二、用...
recommend-type

基于鸢尾花数据集实现线性判别式多分类

本文在自己编写梯度下降的逻辑斯蒂判别式算法的基础上,对鸢尾花数据集实现多分类。 鸢尾花数据集公包含三类数据,每条数据四个特征,从中随机选取70%的数据作为训练集,30%的数据作为测试集。 主要包含三个函数:...
recommend-type

【图像加密解密】 GUI混沌序列图像加密解密(含相关性检验)【含Matlab源码 1862期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。