在VGG-16中,有一个3”3的卷机层,输入3通道图像尺寸为224224,输出特征是224"224*64,请问这个卷积层有多少参数
时间: 2024-04-23 11:21:47 浏览: 228
在VGG-16中,输入3通道图像尺寸为224*224,输出特征图为224*224*64的卷积层,它的卷积核大小为3*3,其中每个卷积核有64个通道。因此,该卷积层的参数数量为:
参数数量 = 卷积核数量 * (卷积核高度 * 卷积核宽度 * 输入通道数 + 1)
其中,1表示偏置项的数量。根据上面的公式,可以得到:
参数数量 = 64 * (3 * 3 * 3 + 1) = 1,792
因此,这个卷积层有1,792个参数。
相关问题
帮我写出PyTorch框架实现的VGG16_UNET的代码,其中最初输入图像大小为256x256,最终输出特征图大小为256x256,通道数为3
好的,以下是基于PyTorch框架实现的VGG16_UNET代码:
```python
import torch
import torch.nn as nn
class VGG16_UNET(nn.Module):
def __init__(self):
super(VGG16_UNET, self).__init__()
# Encoder
self.encoder_block1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.encoder_block2 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.encoder_block3 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.encoder_block4 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.encoder_block5 = nn.Sequential(
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
# Decoder
self.decoder_block1 = nn.Sequential(
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
)
self.decoder_block2 = nn.Sequential(
nn.Conv2d(512, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
)
self.decoder_block3 = nn.Sequential(
nn.Conv2d(256, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
)
self.decoder_block4 = nn.Sequential(
nn.Conv2d(128, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 3, kernel_size=1)
)
def forward(self, x):
# Encoder
x1 = self.encoder_block1(x)
x2 = self.encoder_block2(x1)
x3 = self.encoder_block3(x2)
x4 = self.encoder_block4(x3)
x5 = self.encoder_block5(x4)
# Decoder
d1 = self.decoder_block1(x5)
d1 = torch.cat([x4, d1], dim=1)
d2 = self.decoder_block2(d1)
d2 = torch.cat([x3, d2], dim=1)
d3 = self.decoder_block3(d2)
d3 = torch.cat([x2, d3], dim=1)
d4 = self.decoder_block4(d3)
d4 = torch.cat([x1, d4], dim=1)
return d4
```
其中,VGG16_UNET模型包含了一个Encoder和一个Decoder,Encoder中包含了5个卷积层和池化层,Decoder中包含了4个卷积层和反卷积层。在forward函数中,我们首先通过Encoder将输入的图像特征逐步降采样,然后通过Decoder将特征图逐步上采样,最终输出256x256大小的特征图。
给我一个PyTorch框架实现的VGG16_UNET代码,其输入输出的特征图尺寸与维度一致
好的,以下是一个PyTorch框架实现的VGG16_UNET代码,输入输出的特征图尺寸与维度一致:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class VGG16_UNET(nn.Module):
def __init__(self, n_classes=1):
super(VGG16_UNET, self).__init__()
# VGG16 encoder
self.encoder_conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.encoder_bn1 = nn.BatchNorm2d(64)
self.encoder_conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.encoder_bn2 = nn.BatchNorm2d(64)
self.encoder_conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.encoder_bn3 = nn.BatchNorm2d(128)
self.encoder_conv4 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.encoder_bn4 = nn.BatchNorm2d(128)
self.encoder_conv5 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.encoder_bn5 = nn.BatchNorm2d(256)
self.encoder_conv6 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.encoder_bn6 = nn.BatchNorm2d(256)
self.encoder_conv7 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
self.encoder_bn7 = nn.BatchNorm2d(512)
self.encoder_conv8 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.encoder_bn8 = nn.BatchNorm2d(512)
self.encoder_conv9 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.encoder_bn9 = nn.BatchNorm2d(512)
self.encoder_conv10 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.encoder_bn10 = nn.BatchNorm2d(512)
# VGG16 decoder
self.decoder_conv1 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.decoder_bn1 = nn.BatchNorm2d(512)
self.decoder_conv2 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.decoder_bn2 = nn.BatchNorm2d(512)
self.decoder_conv3 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.decoder_bn3 = nn.BatchNorm2d(512)
self.decoder_conv4 = nn.Conv2d(512, 256, kernel_size=3, padding=1)
self.decoder_bn4 = nn.BatchNorm2d(256)
self.decoder_conv5 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.decoder_bn5 = nn.BatchNorm2d(256)
self.decoder_conv6 = nn.Conv2d(256, 128, kernel_size=3, padding=1)
self.decoder_bn6 = nn.BatchNorm2d(128)
self.decoder_conv7 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.decoder_bn7 = nn.BatchNorm2d(128)
self.decoder_conv8 = nn.Conv2d(128, 64, kernel_size=3, padding=1)
self.decoder_bn8 = nn.BatchNorm2d(64)
self.decoder_conv9 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.decoder_bn9 = nn.BatchNorm2d(64)
self.decoder_conv10 = nn.Conv2d(64, n_classes, kernel_size=1)
def forward(self, x):
# VGG16 encoder
x = F.relu(self.encoder_bn1(self.encoder_conv1(x)))
x = F.relu(self.encoder_bn2(self.encoder_conv2(x)))
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = F.relu(self.encoder_bn3(self.encoder_conv3(x)))
x = F.relu(self.encoder_bn4(self.encoder_conv4(x)))
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = F.relu(self.encoder_bn5(self.encoder_conv5(x)))
x = F.relu(self.encoder_bn6(self.encoder_conv6(x)))
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = F.relu(self.encoder_bn7(self.encoder_conv7(x)))
x = F.relu(self.encoder_bn8(self.encoder_conv8(x)))
x = F.relu(self.encoder_bn9(self.encoder_conv9(x)))
x = F.relu(self.encoder_bn10(self.encoder_conv10(x)))
x = F.max_pool2d(x, kernel_size=2, stride=2)
# VGG16 decoder
x = F.interpolate(x, scale_factor=2, mode='nearest')
x = F.relu(self.decoder_bn1(self.decoder_conv1(x)))
x = F.relu(self.decoder_bn2(self.decoder_conv2(x)))
x = F.relu(self.decoder_bn3(self.decoder_conv3(x)))
x = F.interpolate(x, scale_factor=2, mode='nearest')
x = F.relu(self.decoder_bn4(self.decoder_conv4(x)))
x = F.relu(self.decoder_bn5(self.decoder_conv5(x)))
x = F.interpolate(x, scale_factor=2, mode='nearest')
x = F.relu(self.decoder_bn6(self.decoder_conv6(x)))
x = F.relu(self.decoder_bn7(self.decoder_conv7(x)))
x = F.interpolate(x, scale_factor=2, mode='nearest')
x = F.relu(self.decoder_bn8(self.decoder_conv8(x)))
x = F.relu(self.decoder_bn9(self.decoder_conv9(x)))
x = self.decoder_conv10(x)
return x
```
这个模型的输入是一个3通道的图像,输出是一个1通道的分割图像,具体的维度和尺寸取决于输入的图像大小和分割图像大小。
阅读全文