请使用 PyTorch 框架以 VGG16(类型 D)搭建一个网络模型 VGG16_Model
时间: 2024-05-14 07:17:48 浏览: 131
VGGNet.采用VGG网络在pytorch框架下实现图像分类 拿走即用,包含VGG16等多层网络
5星 · 资源好评率100%
好的,以下是使用 PyTorch 框架以 VGG16(类型 D)搭建的 VGG16_Model 网络模型的代码:
``` python
import torch
import torch.nn as nn
class VGG16_Model(nn.Module):
def __init__(self):
super(VGG16_Model, self).__init__()
self.conv_layers = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.fc_layers = nn.Sequential(
nn.Linear(512*7*7, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 1000)
)
def forward(self, x):
x = self.conv_layers(x)
x = x.view(x.size(0), -1)
x = self.fc_layers(x)
return x
```
这个网络模型 VGG16_Model 按照 VGG16(类型 D)的结构搭建,包括 13 个卷积层和 3 个全连接层。其中,卷积层使用的是 3x3 的卷积核,且每个卷积层后都加了一个 ReLU 激活函数。
这个网络模型的输入是 3 通道、任意大小的图像,输出是 1000 维的向量,代表了图像对应的类别。
阅读全文