修改import torch import torchvision.models as models vgg16_model = models.vgg16(pretrained=True) import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms from PIL import Image # 加载图片 img_path = "pic.jpg" img = Image.open(img_path) # 定义预处理函数 preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 预处理图片,并添加一个维度(batch_size) img_tensor = preprocess(img).unsqueeze(0) # 提取特征 features = vgg16_model.features(img_tensor) import numpy as np import matplotlib.pyplot as plt def deconv_visualization(model, features, layer_idx, iterations=30, lr=1, figsize=(10, 10)): # 获取指定层的输出特征 output = features[layer_idx] # 定义随机输入张量,并启用梯度计算 input_tensor = torch.randn(output.shape, requires_grad=True) # 定义优化器 optimizer = torch.optim.Adam([input_tensor], lr=lr) for i in range(iterations): # 将随机张量输入到网络中,得到对应的输出 model.zero_grad() x = model.features(input_tensor) # 计算输出与目标特征之间的距离,并进行反向传播 loss = F.mse_loss(x[layer_idx], output) loss.backward() # 更新输入张量 optimizer.step() # 反归一化 input_tensor = (input_tensor - input_tensor.min()) / (input_tensor.max() - input_tensor.min()) # 将张量转化为numpy数组 img = input_tensor.squeeze(0).detach().numpy().transpose((1, 2, 0)) # 绘制图像 plt.figure(figsize=figsize) plt.imshow(img) plt.axis("off") plt.show() # 可视化第一层特征 deconv_visualization(vgg16_model, features, 0)使他不产生RuntimeError: Given groups=1, weight of size [64, 3, 3, 3], expected input[1, 512, 7, 7] to have 3 channels, but got 512 channels instead报错
时间: 2023-06-20 18:09:11 浏览: 364
这个错误是因为在运行 `deconv_visualization` 函数时,输入的张量 `input_tensor` 的通道数不匹配。根据报错信息可以看出,输入张量的通道数为 512,而模型的第一层卷积层的权重的通道数为 3,因此需要将输入张量的通道数修改为 3。
您可以尝试在调用 `deconv_visualization` 函数时,指定 `layer_idx` 参数为一个比较浅的卷积层(例如第 2 层),并且修改 `deconv_visualization` 函数中的以下两处代码:
1. 在定义随机输入张量时,修改张量的通道数为 3:
```python
input_tensor = torch.randn(1, 3, output.shape[2], output.shape[3], requires_grad=True)
```
2. 在将随机张量输入到网络中时,使用 `model.features[:layer_idx]` 来只获取模型的前几层特征提取层:
```python
x = model.features[:layer_idx](input_tensor)
```
这样就可以避免报错了。
相关问题
import torch from torch import nn from torch.utils.tensorboard import SummaryWriter class MyModule(nn.Module): def __init__(self): super(MyModule, self).__init__() self.model1 = nn.Sequential( nn.Flatten(), nn.Linear(3072, 100), nn.ReLU(), nn.Linear(100, 1), nn.Sigmoid() ) def forward(self, x): x = self.model1(x) return x import torch import torchvision from PIL.Image import Image from torch.utils.tensorboard import SummaryWriter from torch import nn, optim from torch.utils.data import dataloader from torchvision.transforms import transforms from module import MyModule train = torchvision.datasets.CIFAR10(root="../data",train=True, download=True, transform= transforms.ToTensor()) vgg_model = torchvision.models.vgg16(pretrained=True) vgg_model.classifier.add_module('add_linear', nn.Linear(1000,2)) #ToImage = transforms.ToPILImage() #Image.show(ToImage(train[0][0])) train_data = dataloader.DataLoader(train, batch_size = 128, shuffle=True) model = MyModule() #criterion = nn.BCELoss() epochs = 5 learningRate = 1e-3 optimizer = optim.SGD(model.parameters(),lr = learningRate) loss = nn.CrossEntropyLoss() Writer = SummaryWriter(log_dir="Training") step = 0 for epoch in range(epochs): total_loss = 0 for data,labels in train_data: y = vgg_model(data) los = loss(y,labels) optimizer.zero_grad() los.backward() optimizer.step() Writer.add_scalar("Training",los,step) step = step + 1 if step%100 == 0: print("Training for {0} times".format(step)) total_loss += los print("total_loss is {0}".format(los)) Writer.close() torch.save(vgg_model,"model_vgg.pth")修改变成VGG16-两分类模型
好的,您的问题是如何将这段代码修改成一个基于VGG16的两分类模型?我可以给您一些指导。
首先,我们需要将原先的MyModule替换成VGG16模型。可以使用torchvision中已经实现好的VGG16模型,但需要修改最后一层的输出为两个类别。具体实现方法如下:
```python
vgg_model = torchvision.models.vgg16(pretrained=True)
vgg_model.classifier.add_module('add_linear', nn.Linear(1000,2))
```
这段代码会下载预训练好的VGG16模型,并在其分类器中添加一个新的线性层,输出为2个类别。
其次,我们需要修改损失函数。因为我们现在是进行两分类,所以可以使用交叉熵损失函数(nn.CrossEntropyLoss())。
最后,修改训练过程中的模型、优化器、损失函数等参数即可。具体代码实现如下:
```python
import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torch import nn, optim
from torch.utils.data import dataloader
from torchvision.transforms import transforms
train = torchvision.datasets.CIFAR10(root="../data",train=True, download=True, transform= transforms.ToTensor())
vgg_model = torchvision.models.vgg16(pretrained=True)
vgg_model.classifier.add_module('add_linear', nn.Linear(1000,2))
train_data = dataloader.DataLoader(train, batch_size = 128, shuffle=True)
criterion = nn.CrossEntropyLoss()
epochs = 5
learningRate = 1e-3
optimizer = optim.SGD(vgg_model.parameters(),lr = learningRate)
Writer = SummaryWriter(log_dir="Training")
step = 0
for epoch in range(epochs):
total_loss = 0
for data,labels in train_data:
optimizer.zero_grad()
y = vgg_model(data)
los = criterion(y,labels)
los.backward()
optimizer.step()
Writer.add_scalar("Training",los,step)
step = step + 1
if step%100 == 0:
print("Training for {0} times".format(step))
total_loss += los
print("total_loss is {0}".format(total_loss))
Writer.close()
torch.save(vgg_model,"model_vgg.pth")
```
希望这个回答能够帮到您!
from collections import OrderedDict import torch import torch.nn.functional as F import torchvision from torch import nn import models.vgg_ as models class BackboneBase_VGG(nn.Module): def __init__(self, backbone: nn.Module, num_channels: int, name: str, return_interm_layers: bool): super().__init__() features = list(backbone.features.children()) if return_interm_layers: if name == 'vgg16_bn': self.body1 = nn.Sequential(*features[:13]) self.body2 = nn.Sequential(*features[13:23]) self.body3 = nn.Sequential(*features[23:33]) self.body4 = nn.Sequential(*features[33:43]) else: self.body1 = nn.Sequential(*features[:9]) self.body2 = nn.Sequential(*features[9:16]) self.body3 = nn.Sequential(*features[16:23]) self.body4 = nn.Sequential(*features[23:30]) else: if name == 'vgg16_bn': self.body = nn.Sequential(*features[:44]) # 16x down-sample elif name == 'vgg16': self.body = nn.Sequential(*features[:30]) # 16x down-sample self.num_channels = num_channels self.return_interm_layers = return_interm_layers def forward(self, tensor_list): out = [] if self.return_interm_layers: xs = tensor_list for _, layer in enumerate([self.body1, self.body2, self.body3, self.body4]): xs = layer(xs) out.append(xs) else: xs = self.body(tensor_list) out.append(xs) return out class Backbone_VGG(BackboneBase_VGG): """ResNet backbone with frozen BatchNorm.""" def __init__(self, name: str, return_interm_layers: bool): if name == 'vgg16_bn': backbone = models.vgg16_bn(pretrained=True) elif name == 'vgg16': backbone = models.vgg16(pretrained=True) num_channels = 256 super().__init__(backbone, num_channels, name, return_interm_layers) def build_backbone(args): backbone = Backbone_VGG(args.backbone, True) return backbone if __name__ == '__main__': Backbone_VGG('vgg16', True)
这段代码是一个基于VGG的神经网络模型的定义,主要用于特征提取。其中包括两个类:`BackboneBase_VGG`和`Backbone_VGG`以及一个函数`build_backbone`。
`BackboneBase_VGG`类是VGG的基础类,用于构建VGG神经网络模型。它的初始化函数接受四个参数:`backbone`,`num_channels`,`name`和`return_interm_layers`,其中`backbone`表示VGG的主干网络,`num_channels`表示输出的通道数,`name`表示VGG的名称,`return_interm_layers`表示是否返回中间层的输出。
`Backbone_VGG`类继承自`BackboneBase_VGG`类,主要用于构建一个冻结BatchNorm的VGG神经网络模型。它的初始化函数接受两个参数:`name`和`return_interm_layers`,其中`name`表示VGG的名称,`return_interm_layers`表示是否返回中间层的输出。这个类的主要作用是将`BackboneBase_VGG`类中的属性和方法进行实例化,然后通过调用父类的`__init__`方法进行初始化。
`build_backbone`函数是用于构建VGG神经网络模型的函数,它接受一个参数`args`,其中包含了VGG神经网络模型的一些参数。在这个函数中,会调用`Backbone_VGG`类来构建一个VGG神经网络模型,并将其返回。
最后,在`if __name__ == '__main__':`中,会创建一个`Backbone_VGG`类的实例对象,并传入参数`'vgg16'`和`True`进行初始化。
阅读全文