import torch from torch import nn import d2l def vgg_block(num_convs, in_channels, out_channels): layers = [] for _ in range(num_convs): layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)) layers.append(nn.ReLU()) in_channels = out_channels layers.append(nn.MaxPool2d(kernel_size=2,stride=2)) return nn.Sequential(*layers) conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512)) def vgg(conv_arch): conv_blks = [] in_channels = 3 # 卷积层部分 for (num_convs, out_channels) in conv_arch: conv_blks.append(vgg_block(num_convs, in_channels, out_channels)) in_channels = out_channels return nn.Sequential( *conv_blks, nn.Flatten(), # 全连接层部分 nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5), nn.Linear(4096, 2048), nn.ReLU(), nn.Dropout(0.5), nn.Linear(2048, 10)) 这部分代码的参数如何修改会提高准确率,net = vgg(conv_arch) X = torch.randn(size=(1, 3, 224, 224)) for blk in net: X = blk(X) print(blk.__class__.__name__,'output shape:\t',X.shape) ratio = 4 small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch] net = vgg(small_conv_arch)这一部分代码有需要改哪些参数会提高准确率,lr, num_epochs, batch_size = 0.01, 60, 64 train_iter, test_iter = d2l.load_data_cifar10(batch_size, resize=224) d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())这一部分代码中的参怎么改会提高准确率?
时间: 2024-03-18 12:44:08 浏览: 118
对于第一部分代码,可以修改卷积层数量、卷积核大小、全连接层数量以及Dropout概率等参数来提高准确率。例如,可以增加卷积层数量、减小卷积核大小、增加全连接层数量或者减小Dropout概率等。
对于第二部分代码,可以调整小网络的结构、增加卷积层数量或者增加训练数据量等来提高准确率。
对于第三部分代码,可以尝试调整学习率、训练轮数、批量大小等参数来提高准确率。例如,可以增加学习率、增加训练轮数或者减小批量大小等。
相关问题
from collections import OrderedDict import torch import torch.nn.functional as F import torchvision from torch import nn import models.vgg_ as models class BackboneBase_VGG(nn.Module): def __init__(self, backbone: nn.Module, num_channels: int, name: str, return_interm_layers: bool): super().__init__() features = list(backbone.features.children()) if return_interm_layers: if name == 'vgg16_bn': self.body1 = nn.Sequential(*features[:13]) self.body2 = nn.Sequential(*features[13:23]) self.body3 = nn.Sequential(*features[23:33]) self.body4 = nn.Sequential(*features[33:43]) else: self.body1 = nn.Sequential(*features[:9]) self.body2 = nn.Sequential(*features[9:16]) self.body3 = nn.Sequential(*features[16:23]) self.body4 = nn.Sequential(*features[23:30]) else: if name == 'vgg16_bn': self.body = nn.Sequential(*features[:44]) # 16x down-sample elif name == 'vgg16': self.body = nn.Sequential(*features[:30]) # 16x down-sample self.num_channels = num_channels self.return_interm_layers = return_interm_layers def forward(self, tensor_list): out = [] if self.return_interm_layers: xs = tensor_list for _, layer in enumerate([self.body1, self.body2, self.body3, self.body4]): xs = layer(xs) out.append(xs) else: xs = self.body(tensor_list) out.append(xs) return out class Backbone_VGG(BackboneBase_VGG): """ResNet backbone with frozen BatchNorm.""" def __init__(self, name: str, return_interm_layers: bool): if name == 'vgg16_bn': backbone = models.vgg16_bn(pretrained=True) elif name == 'vgg16': backbone = models.vgg16(pretrained=True) num_channels = 256 super().__init__(backbone, num_channels, name, return_interm_layers) def build_backbone(args): backbone = Backbone_VGG(args.backbone, True) return backbone if __name__ == '__main__': Backbone_VGG('vgg16', True)
这段代码是一个基于VGG的神经网络模型的定义,主要用于特征提取。其中包括两个类:`BackboneBase_VGG`和`Backbone_VGG`以及一个函数`build_backbone`。
`BackboneBase_VGG`类是VGG的基础类,用于构建VGG神经网络模型。它的初始化函数接受四个参数:`backbone`,`num_channels`,`name`和`return_interm_layers`,其中`backbone`表示VGG的主干网络,`num_channels`表示输出的通道数,`name`表示VGG的名称,`return_interm_layers`表示是否返回中间层的输出。
`Backbone_VGG`类继承自`BackboneBase_VGG`类,主要用于构建一个冻结BatchNorm的VGG神经网络模型。它的初始化函数接受两个参数:`name`和`return_interm_layers`,其中`name`表示VGG的名称,`return_interm_layers`表示是否返回中间层的输出。这个类的主要作用是将`BackboneBase_VGG`类中的属性和方法进行实例化,然后通过调用父类的`__init__`方法进行初始化。
`build_backbone`函数是用于构建VGG神经网络模型的函数,它接受一个参数`args`,其中包含了VGG神经网络模型的一些参数。在这个函数中,会调用`Backbone_VGG`类来构建一个VGG神经网络模型,并将其返回。
最后,在`if __name__ == '__main__':`中,会创建一个`Backbone_VGG`类的实例对象,并传入参数`'vgg16'`和`True`进行初始化。
阅读全文
相关推荐
![gz](https://img-home.csdnimg.cn/images/20210720083447.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)