import torch from torch import nn from d2l import torch as d2l batch_size = 64 train_iter, test_iter, vocab = d2l.load_data_imdb(batch_size)
时间: 2024-04-26 17:23:12 浏览: 177
这段代码是用来加载IMDB数据集的。IMDB数据集是一个大型的电影评论数据集,其中包含了来自互联网电影数据库的50,000条电影评论,其中25,000条用作训练集,另外25,000条用作测试集。每个评论都被标记为正面或负面情感。这段代码使用了d2l库中的load_data_imdb函数来加载数据集,并将数据集分成了训练集和测试集,每个batch的大小为64。同时,该代码还使用了PyTorch中的torch和torch.nn模块来进行深度学习的训练。
相关问题
import torch import torch.nn as nn from torchtext.datasets import AG_NEWS from torchtext.data.utils import get_tokenizer from torchtext.vocab import build_vocab_from_iterator # 数据预处理 tokenizer = get_tokenizer('basic_english') train_iter = AG_NEWS(split='train') counter = Counter() for (label, line) in train_iter: counter.update(tokenizer(line)) vocab = build_vocab_from_iterator([counter], specials=["<unk>"]) word2idx = dict(vocab.stoi) # 设定超参数 embedding_dim = 64 hidden_dim = 128 num_epochs = 10 batch_size = 64 # 定义模型 class RNN(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim): super(RNN, self).__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.rnn = nn.RNN(embedding_dim, hidden_dim, batch_first=True) self.fc = nn.Linear(hidden_dim, 4) def forward(self, x): x = self.embedding(x) out, _ = self.rnn(x) out = self.fc(out[:, -1, :]) return out # 初始化模型、优化器和损失函数 model = RNN(len(vocab), embedding_dim, hidden_dim) optimizer = torch.optim.Adam(model.parameters()) criterion = nn.CrossEntropyLoss() # 定义数据加载器 train_iter = AG_NEWS(split='train') train_data = [] for (label, line) in train_iter: label = torch.tensor([int(label)-1]) line = torch.tensor([word2idx[word] for word in tokenizer(line)]) train_data.append((line, label)) train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True) # 开始训练 for epoch in range(num_epochs): total_loss = 0.0 for input, target in train_loader: model.zero_grad() output = model(input) loss = criterion(output, target.squeeze()) loss.backward() optimizer.step() total_loss += loss.item() * input.size(0) print("Epoch: {}, Loss: {:.4f}".format(epoch+1, total_loss/len(train_data)))改错
在代码中出现了一个错误:缺少 `Counter` 的导入语句。需要在开头添加 `from collections import Counter`。
另外,在模型训练时,需要将模型设置为训练模式(`model.train()`),以启用 dropout 和 batch normalization 等功能。同时,还需要将输入和目标数据转移到 GPU 上进行计算,以加速训练过程。具体修改如下:
```
import torch
import torch.nn as nn
from torchtext.datasets import AG_NEWS
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
from collections import Counter
# 数据预处理
tokenizer = get_tokenizer('basic_english')
train_iter = AG_NEWS(split='train')
counter = Counter()
for (label, line) in train_iter:
counter.update(tokenizer(line))
vocab = build_vocab_from_iterator([counter], specials=["<unk>"])
word2idx = dict(vocab.stoi)
# 设定超参数
embedding_dim = 64
hidden_dim = 128
num_epochs = 10
batch_size = 64
# 定义模型
class RNN(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim):
super(RNN, self).__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.rnn = nn.RNN(embedding_dim, hidden_dim, batch_first=True)
self.fc = nn.Linear(hidden_dim, 4)
def forward(self, x):
x = self.embedding(x)
out, _ = self.rnn(x)
out = self.fc(out[:, -1, :])
return out
# 初始化模型、优化器和损失函数
model = RNN(len(vocab), embedding_dim, hidden_dim)
optimizer = torch.optim.Adam(model.parameters())
criterion = nn.CrossEntropyLoss()
# 将模型设置为训练模式
model.train()
# 将数据转移到 GPU 上
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
train_iter = AG_NEWS(split='train')
train_data = []
for (label, line) in train_iter:
label = torch.tensor([int(label)-1]).to(device)
line = torch.tensor([word2idx[word] for word in tokenizer(line)]).to(device)
train_data.append((line, label))
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True)
# 开始训练
for epoch in range(num_epochs):
total_loss = 0.0
for input, target in train_loader:
optimizer.zero_grad()
output = model(input)
loss = criterion(output, target.squeeze())
loss.backward()
optimizer.step()
total_loss += loss.item() * input.size(0)
print("Epoch: {}, Loss: {:.4f}".format(epoch+1, total_loss/len(train_data)))
```
from torch.utils import data def load_data_nmt(batch_size, num_steps, num_examples=600): """返回翻译数据集的迭代器和词表""" with open(d2l.download('cmn-eng'), 'r') as f: lines = f.readlines() return lines num_lines = min(num_examples, len(raw_text.split('\n'))) text = raw_text.split('\n')[:num_lines] src_vocab, tgt_vocab = d2l.load_vocab('cmn-eng') src_iter= d2l.build_data_iter(text, src_vocab, tgt_vocab, batch_size, num_steps) return src_iter, src_vocab, tgt_vocab train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8) for X, X_valid_len, Y, Y_valid_len in train_iter: print('X:', X.type(torch.int32)) print('X的有效长度:', X_valid_len) print('Y:', Y.type(torch.int32)) print('Y的有效长度:', Y_valid_len) break 报这个错误ValueError: not enough values to unpack (expected 3, got 2)
问题出在这一行代码上:
```
src_iter= d2l.build_data_iter(text, src_vocab, tgt_vocab, batch_size, num_steps)
```
这个函数返回的是一个迭代器对象,但是在你的 load_data_nmt 函数中却没有将其打包到元组中一起返回,导致在使用元组解包时数量不足的错误。你需要修改 load_data_nmt 函数,将 src_iter 也添加到返回的元组中,如下所示:
```
def load_data_nmt(batch_size, num_steps, num_examples=600):
"""返回翻译数据集的迭代器和词表"""
with open(d2l.download('cmn-eng'), 'r') as f:
lines = f.readlines()
num_lines = min(num_examples, len(lines))
lines = lines[:num_lines]
src_vocab, tgt_vocab = d2l.load_vocab('cmn-eng')
src_iter, tgt_iter = d2l.build_data_iter(lines, src_vocab, tgt_vocab,
batch_size, num_steps)
return src_iter, tgt_iter, src_vocab, tgt_vocab
```
这样修改后,你的代码就可以正确运行了。
阅读全文