写出from torchtext.legacy import data, 用RNN优化器的代码
时间: 2023-02-08 12:24:58 浏览: 205
```python
import torch
from torchtext.legacy.data import TabularDataset, BucketIterator
# 定义数据集
train_data, valid_data, test_data = TabularDataset.splits(
path='path/to/data',
train='train.csv',
validation='valid.csv',
test='test.csv',
format='csv',
fields=[('text', text_field), ('label', label_field)]
)
# 定义迭代器
train_iter, valid_iter, test_iter = BucketIterator.splits(
(train_data, valid_data, test_data),
batch_sizes=(64, 64, 64),
sort_key=lambda x: len(x.text),
sort_within_batch=True,
device=-1
)
# 定义模型
class RNNModel(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, n_layers, bidirectional, dropout):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.rnn = nn.RNN(embedding_dim, hidden_dim, n_layers, bidirectional=bidirectional, dropout=dropout)
self.fc = nn.Linear(hidden_dim*2, output_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# 将输入的形状从(batch_size, seq_len)转换为(batch_size, seq_len, embedding_dim)
x = self.embedding(x)
# 由于RNN的输入需要是(batch_size, seq_len, input_size),而embedding后的形状为(batch_size, seq_len, embedding_dim)
# 因此需要进行转置,将第二维和第三维调换位置
x = x.permute(1, 0, 2)
# 通过RNN网络获取隐藏状态
output, hidden = self.rnn(x)
# 将两个方向的隐藏状态拼接在一起
hidden = self.dropout(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1))
# 通过全连接层获取预测结果
out = self.fc(hidden.squeeze(0))
return out
阅读全文