给我一串可运行的神经网络的情感分析代码
时间: 2024-03-19 10:45:10 浏览: 72
好的,这是一段使用PyTorch框架编写的简单情感分析神经网络代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchtext.legacy import data
from torchtext.legacy import datasets
# 设置随机数种子,以便复现结果
SEED = 1234
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
# 定义字段
TEXT = data.Field(tokenize = 'spacy', tokenizer_language='en_core_web_sm')
LABEL = data.LabelField(dtype = torch.float)
# 加载IMDb数据集
train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)
# 构建词汇表
MAX_VOCAB_SIZE = 25000
TEXT.build_vocab(train_data,
max_size = MAX_VOCAB_SIZE,
vectors = "glove.6B.100d",
unk_init = torch.Tensor.normal_)
LABEL.build_vocab(train_data)
# 构建迭代器
BATCH_SIZE = 64
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_iterator, test_iterator = data.BucketIterator.splits(
(train_data, test_data),
batch_size = BATCH_SIZE,
device = device)
# 定义模型
class SentimentNet(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, n_layers, bidirectional, dropout):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.rnn = nn.LSTM(embedding_dim,
hidden_dim,
num_layers=n_layers,
bidirectional=bidirectional,
dropout=dropout)
self.fc = nn.Linear(hidden_dim * 2, output_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, text):
embedded = self.dropout(self.embedding(text))
output, (hidden, cell) = self.rnn(embedded)
hidden = self.dropout(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1))
return self.fc(hidden.squeeze(0))
# 实例化模型
VOCAB_SIZE = len(TEXT.vocab)
EMBEDDING_DIM = 100
HIDDEN_DIM = 256
OUTPUT_DIM = 1
N_LAYERS = 2
BIDIRECTIONAL = True
DROPOUT = 0.5
model = SentimentNet(VOCAB_SIZE,
EMBEDDING_DIM,
HIDDEN_DIM,
OUTPUT_DIM,
N_LAYERS,
BIDIRECTIONAL,
DROPOUT)
# 加载预训练词向量
pretrained_embeddings = TEXT.vocab.vectors
model.embedding.weight.data.copy_(pretrained_embeddings)
# 定义优化器和损失函数
optimizer = optim.Adam(model.parameters())
criterion = nn.BCEWithLogitsLoss()
# 将模型移至GPU
model = model.to(device)
criterion = criterion.to(device)
# 训练模型
def train(model, iterator, optimizer, criterion):
epoch_loss = 0
epoch_acc = 0
model.train()
for batch in iterator:
optimizer.zero_grad()
predictions = model(batch.text).squeeze(1)
loss = criterion(predictions, batch.label)
rounded_preds = torch.round(torch.sigmoid(predictions))
correct = (rounded_preds == batch.label).float()
acc = correct.sum() / len(correct)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
# 测试模型
def evaluate(model, iterator, criterion):
epoch_loss = 0
epoch_acc = 0
model.eval()
with torch.no_grad():
for batch in iterator:
predictions = model(batch.text).squeeze(1)
loss = criterion(predictions, batch.label)
rounded_preds = torch.round(torch.sigmoid(predictions))
correct = (rounded_preds == batch.label).float()
acc = correct.sum() / len(correct)
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
# 训练模型
N_EPOCHS = 5
best_valid_loss = float('inf')
for epoch in range(N_EPOCHS):
train_loss, train_acc = train(model, train_iterator, optimizer, criterion)
valid_loss, valid_acc = evaluate(model, test_iterator, criterion)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), 'tut1-model.pt')
print(f'Epoch: {epoch+1:02}')
print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%')
print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}%')
# 加载训练好的模型
model.load_state_dict(torch.load('tut1-model.pt'))
# 预测新数据
def predict_sentiment(model, sentence):
model.eval()
tokenized = [tok.text for tok in nlp.tokenizer(sentence)]
indexed = [TEXT.vocab.stoi[t] for t in tokenized]
tensor = torch.LongTensor(indexed).to(device)
tensor = tensor.unsqueeze(1)
prediction = torch.sigmoid(model(tensor))
return prediction.item()
```
这段代码使用了LSTM神经网络模型对IMDB电影评论进行情感分析,可以输出评论的正面情感概率。请注意,这里使用了PyTorch框架和torchtext库来处理数据集和构建模型,还使用了spaCy库来进行英文分词,需要提前安装以上库。
阅读全文