使用simulink,逐步完成QPSK在AWGN信道下的通信链路的搭建。具体包括: 1、完成基带矩形波传输链路搭建 2、添加上下变频模块,完成带通矩形波传输链路搭建 3、添加升余弦脉冲成形模块,完成带通升余弦成形传输链路搭建 每一步在搭建好的电路上观察各模块对时频域的影响及不同信噪比下收发端星座图与系统误码率。 完成全部电路后,绘制误码率曲线,并观察在有载波频差情况下的接收星座图。 拓展练习:自搭建QPSK发射符号映射与接收检测模块 【建议参数】 比特速率0.5Mbps,载波频率10MHz,滚降因子0.4

时间: 2024-03-07 09:54:02 浏览: 20
很抱歉,我无法使用Simulink进行具体的操作和演示。但我可以给您提供一些思路和建议: 1. 基带矩形波传输链路搭建: 首先,需要生成 QPSK 调制信号序列,并将其转换为矩形波形。可以使用 Simulink 中的信号源模块和 QPSK 调制器模块实现。然后,将矩形波形输入到信道模块中,加入高斯白噪声(AWGN)信道,并将其输出连接到接收端。在接收端,需要将接收到的信号进行解调,并将其转换为二进制比特流。 2. 添加上下变频模块,完成带通矩形波传输链路搭建: 在基带矩形波传输链路的基础上,需要添加上下变频模块,将矩形波信号转换为带通信号。可以使用 FIR 滤波器模块实现上下变频,并观察其对信号的时频特性的影响。 3. 添加升余弦脉冲成形模块,完成带通升余弦成形传输链路搭建: 在带通矩形波传输链路的基础上,需要添加升余弦脉冲成形模块,将信号进行升余弦脉冲成形,以降低带宽,减小 ISI(intersymbol interference)的影响。可以使用升余弦滤波器模块实现,并观察其对信号的时频特性的影响。 对于星座图和误码率的观察,可以使用 QPSK 调制器和解调器模块中的 Constellation Diagram 和 Error Rate 的功能实现。可以在不同的信噪比下观察收发端的星座图和误码率,分析系统的性能。 最后,绘制误码率曲线,并观察在有载波频差情况下的接收星座图。可以使用 MATLAB 中的 QPSK 发射符号映射和接收检测模块实现。
相关问题

2、QPSK基带矩形波传输链路 用simulink自带通信模块完成QPSK(采用A方式,如下图所示)的基带矩形波传输链路的搭建(信源,数字调制,AWGN信道,数字解调,信宿)。 观察在不同信噪比下收发端星座图及系统误码率变化。

QPSK基带矩形波传输链路的搭建可以分为以下几个模块: 1. 信源模块:使用Bernoulli Binary Generator模块生成随机二进制序列。 2. 数字调制模块:将随机二进制序列使用QPSK调制,形成基带矩形波信号。 3. AWGN信道模块:将调制后的信号传输到AWGN信道模块中,加入高斯白噪声。 4. 数字解调模块:将接收到的信号进行QPSK解调,得到随机二进制序列。 5. 信宿模块:使用Error Rate Calculation模块计算误码率,并使用Constellation Diagram和Error Rate Display模块显示收发端星座图和系统误码率变化。 以下是基于Simulink自带通信模块完成QPSK基带矩形波传输链路搭建的步骤: 1. 打开Simulink软件,新建一个模型。 2. 从信号源库中添加Bernoulli Binary Generator模块,设置Sample time为0.05μs。 3. 从通信库中添加QPSK Modulator Baseband模块,将Bernoulli Binary Generator模块的输出连接到QPSK Modulator Baseband模块的输入端口。 4. 从通信库中添加AWGN Channel模块,将QPSK Modulator Baseband模块的输出连接到AWGN Channel模块的输入端口。 5. 从通信库中添加QPSK Demodulator Baseband模块,将AWGN Channel模块的输出连接到QPSK Demodulator Baseband模块的输入端口。 6. 从工具箱库中添加Error Rate Calculation模块,将QPSK Demodulator Baseband模块的输出连接到Error Rate Calculation模块的输入端口。 7. 从工具箱库中添加Constellation Diagram模块和Error Rate Display模块,将QPSK Modulator Baseband模块和Error Rate Calculation模块的输出分别连接到Constellation Diagram模块和Error Rate Display模块。 8. 在AWGN Channel模块的参数设置界面中,设置信噪比(SNR)的值,以控制加入的高斯白噪声的强度。 9. 在Error Rate Calculation模块的参数设置界面中,设置误码率计算的参数,如比特数、符号数等。 10. 运行Simulink模型,观察收发端星座图及系统误码率变化。 需要注意的是,模型中各个模块的参数设置需要根据实验要求进行调整,以达到最佳的实验效果。此外,误码率的计算和星座图的显示可以帮助我们评估系统的性能,确定最佳的信噪比和参数设置。

比特速率0.5Mbps,载波频率10MHz,用simulink自带通信模块完成QPSK(采用A方式,如下图所示)的基带矩形波传输链路的搭建(信源,数字调制,AWGN信道,数字解调,信宿)。

好的,我理解了你的问题。关于这个问题,我可以提供一些指导和建议,但是需要注意的是,Simulink的具体操作需要根据具体的版本和操作系统来进行,因此以下的指导仅供参考。 首先,需要在Simulink中建立一个新的模型,然后依次添加信源、数字调制、AWGN信道、数字解调和信宿模块,以完成QPSK的基带矩形波传输链路的搭建。具体步骤如下: 1. 信源模块:选择Simulink自带的信号源模块,可以生成各种类型的信号,包括正弦波、方波、三角波等等。在这里,我们需要生成二进制数据,因此可以选择“Random Integer Generator”模块,生成0或1的随机整数数据流。 2. 数字调制模块:选择Simulink自带的QPSK调制模块,将二进制数据流转换为QPSK调制信号。在这里,我们选择A方式,即使用基带矩形波作为调制信号。 3. AWGN信道模块:选择Simulink自带的AWGN信道模块,用于模拟通信信道中的噪声干扰。在这里,我们需要设置信噪比(SNR)参数,以调节噪声的强度。 4. 数字解调模块:选择Simulink自带的QPSK解调模块,将接收到的信号解调为二进制数据流。 5. 信宿模块:选择Simulink自带的信号显示模块,用于显示接收到的二进制数据流。 这些模块之间需要连接起来,构成完整的传输链路。具体来说,我们需要将信源模块的输出连接到数字调制模块的输入,数字调制模块的输出连接到AWGN信道模块的输入,AWGN信道模块的输出连接到数字解调模块的输入,数字解调模块的输出连接到信宿模块的输入。同时,需要设置各个模块的参数,以满足实验要求。比如,载波频率和比特率可以在数字调制模块中设置。 最后,我们需要运行Simulink模型,观察信号的传输和解调情况,验证实验结果是否符合预期。

相关推荐

最新推荐

recommend-type

Matlab--Simulink仿真设计--《通信电子线路》课程设计报告

电容三点式振荡电路的Simulink仿真、混频器的Simulink仿真、高频调谐功率放大器的Simulink仿真.适用于大学党、期末党(江科大学子)哦~ 设计一、电容三点式振荡电路 设计二、混频器 设计三、高频调谐功率放大器
recommend-type

实验二 Simulink串口与匿名上位机通信实验.docx

simulink通信实验仿真,实验指导手册doc版,自编附件 @all right received by 扬州大学张伟
recommend-type

node-v12.20.1-sunos-x64.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基于Springboot+Vue的乡政府管理系统-毕业源码案例设计.zip

网络技术和计算机技术发展至今,已经拥有了深厚的理论基础,并在现实中进行了充分运用,尤其是基于计算机运行的软件更是受到各界的关注。加上现在人们已经步入信息时代,所以对于信息的宣传和管理就很关键。系统化是必要的,设计网上系统不仅会节约人力和管理成本,还会安全保存庞大的数据量,对于信息的维护和检索也不需要花费很多时间,非常的便利。 网上系统是在MySQL中建立数据表保存信息,运用SpringBoot框架和Java语言编写。并按照软件设计开发流程进行设计实现。系统具备友好性且功能完善。 网上系统在让售信息规范化的同时,也能及时通过数据输入的有效性规则检测出错误数据,让数据的录入达到准确性的目的,进而提升数据的可靠性,让系统数据的错误率降至最低。 关键词:vue;MySQL;SpringBoot框架 【引流】 Java、Python、Node.js、Spring Boot、Django、Express、MySQL、PostgreSQL、MongoDB、React、Angular、Vue、Bootstrap、Material-UI、Redis、Docker、Kubernetes
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

ActionContext.getContext().get()代码含义

ActionContext.getContext().get() 是从当前请求的上下文对象中获取指定的属性值的代码。在ActionContext.getContext()方法的返回值上,调用get()方法可以获取当前请求中指定属性的值。 具体来说,ActionContext是Struts2框架中的一个类,它封装了当前请求的上下文信息。在这个上下文对象中,可以存储一些请求相关的属性值,比如请求参数、会话信息、请求头、应用程序上下文等等。调用ActionContext.getContext()方法可以获取当前请求的上下文对象,而调用get()方法可以获取指定属性的值。 例如,可以使用 Acti
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依