batch_size循环
时间: 2023-11-12 16:08:36 浏览: 100
在上述代码中,batch_size是指每一批次中的样本数量。首先,在循环中调用optimizer.step()更新模型参数时,batch_size被设置为target.shape的数值大小。此外,输入数据和目标数据也被赋值给了inputs和target变量,其中batch_size等于target.shape的数值大小。此外,根据引用所示,batch_size和num_samples是决定每个批次数量的两个因素,而seq_len则不会影响最后生成的批次数量。因此,batch_size在循环中起到了决定每个批次中样本数量的作用。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [关于epochs和batch_size含义的理解](https://blog.csdn.net/wen_ding/article/details/127382919)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *3* [Pytorch中RNN LSTM的input(重点理解batch_size/time_steps)](https://blog.csdn.net/ch206265/article/details/106979744)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文