ppf算法的测试代码
时间: 2023-11-10 22:02:55 浏览: 173
FP算法源代码
5星 · 资源好评率100%
以下是一个使用ppf算法进行测试的示例代码:
```python
import numpy as np
from sklearn.neighbors import NearestNeighbors
def ppf_algorithm(points, normals):
# 计算点对特征
features = np.zeros((len(points), 4))
for i in range(len(points)):
p1 = points[i]
n1 = normals[i]
for j in range(len(points)):
if i != j:
p2 = points[j]
n2 = normals[j]
delta_p = p2 - p1
delta_n = n2 - n1
alpha = np.arctan2(delta_p[1], delta_p[0])
beta = np.arccos(delta_n.dot(delta_p) / (np.linalg.norm(delta_n) * np.linalg.norm(delta_p)))
features[i] += np.array([alpha, beta, delta_p[0], delta_p[1]])
features[i] /= len(points) - 1
# 使用KNN查找最近邻点对
nbrs = NearestNeighbors(n_neighbors=2, algorithm='kd_tree').fit(features)
distances, indices = nbrs.kneighbors(features)
return distances, indices
# 测试数据
points = np.array([[0, 0], [1, 1], [2, 2], [3, 3]])
normals = np.array([[1, 0], [0, 1], [-1, 0], [0, -1]])
distances, indices = ppf_algorithm(points, normals)
print("距离:", distances)
print("索引:", indices)
```
阅读全文