你能写一段C语言实现的卷积神经网络算法吗
时间: 2023-05-11 12:04:42 浏览: 120
当然可以,以下是一段C语言实现的卷积神经网络算法的代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define MAX(a, b) ((a) > (b) ? (a) : (b))
// 定义卷积神经网络的结构体
typedef struct {
int input_size; // 输入层大小
int output_size; // 输出层大小
int kernel_size; // 卷积核大小
int stride; // 步长
int padding; // 填充
double *weights; // 权重
double *bias; // 偏置
} ConvolutionalLayer;
// 定义激活函数
double relu(double x) {
return MAX(0, x);
}
// 定义卷积操作
void convolution(double *input, int input_size, double *kernel, int kernel_size, int stride, int padding, double *output, int output_size, double *bias) {
int output_index = 0;
for (int i = 0; i < output_size; i++) {
for (int j = 0; j < output_size; j++) {
double sum = 0.0;
for (int k = 0; k < kernel_size; k++) {
for (int l = 0; l < kernel_size; l++) {
int input_index = (i * stride + k - padding) * input_size + (j * stride + l - padding);
if (input_index >= 0 && input_index < input_size * input_size) {
sum += input[input_index] * kernel[k * kernel_size + l];
}
}
}
output[output_index++] = relu(sum + bias[i]);
}
}
}
// 定义前向传播函数
void forward(ConvolutionalLayer *layer, double *input, double *output) {
convolution(input, layer->input_size, layer->weights, layer->kernel_size, layer->stride, layer->padding, output, layer->output_size, layer->bias);
}
// 定义主函数
int main() {
// 初始化卷积神经网络
ConvolutionalLayer layer;
layer.input_size = 28;
layer.output_size = 24;
layer.kernel_size = 5;
layer.stride = 1;
layer.padding = 0;
layer.weights = (double *)malloc(layer.kernel_size * layer.kernel_size * sizeof(double));
layer.bias = (double *)malloc(layer.output_size * sizeof(double));
for (int i = 0; i < layer.kernel_size * layer.kernel_size; i++) {
layer.weights[i] = (double)rand() / RAND_MAX;
}
for (int i = 0; i < layer.output_size; i++) {
layer.bias[i] = (double)rand() / RAND_MAX;
}
// 初始化输入和输出
double *input = (double *)malloc(layer.input_size * layer.input_size * sizeof(double));
double *output = (double *)malloc(layer.output_size * layer.output_size * sizeof(double));
for (int i = 0; i < layer.input_size * layer.input_size; i++) {
input[i] = (double)rand() / RAND_MAX;
}
// 进行前向传播
forward(&layer, input, output);
// 输出结果
for (int i = 0; i < layer.output_size * layer.output_size; i++) {
printf("%f ", output[i]);
}
printf("\n");
// 释放内存
free(layer.weights);
free(layer.bias);
free(input);
free(output);
return 0;
}
```
希望能对您有所帮助!
阅读全文