哈夫曼树与哈夫曼编码C语言

时间: 2023-06-28 20:11:33 浏览: 121
哈夫曼树是一种树形结构,它的节点可以是字符或者权值,构建哈夫曼树的过程就是根据权值构建一颗满足最小带权路径长度的树。 在哈夫曼树构建完成后,我们可以根据哈夫曼树来实现哈夫曼编码。哈夫曼编码是一种变长编码,用于将字符编码为二进制数,使得出现频率高的字符编码短,出现频率低的字符编码长。 以下是使用C语言实现哈夫曼树和哈夫曼编码的示例代码: ``` #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_NODES 256 typedef struct node { int value; char ch; struct node *left; struct node *right; } Node; typedef struct heap { Node *nodes[MAX_NODES]; int size; } Heap; Node *new_node(int value, char ch) { Node *node = (Node *) malloc(sizeof(Node)); node->value = value; node->ch = ch; node->left = NULL; node->right = NULL; return node; } Heap *new_heap() { Heap *heap = (Heap *) malloc(sizeof(Heap)); heap->size = 0; return heap; } void swap_node(Node **a, Node **b) { Node *temp = *a; *a = *b; *b = temp; } void insert_node(Heap *heap, Node *node) { heap->nodes[++heap->size] = node; int current = heap->size; while (current > 1 && heap->nodes[current]->value < heap->nodes[current / 2]->value) { swap_node(&heap->nodes[current], &heap->nodes[current / 2]); current /= 2; } } Node *get_min_node(Heap *heap) { Node *min_node = heap->nodes[1]; heap->nodes[1] = heap->nodes[heap->size--]; int current = 1; while (current * 2 <= heap->size) { int child = current * 2; if (child + 1 <= heap->size && heap->nodes[child + 1]->value < heap->nodes[child]->value) { child++; } if (heap->nodes[child]->value < heap->nodes[current]->value) { swap_node(&heap->nodes[child], &heap->nodes[current]); current = child; } else { break; } } return min_node; } void build_tree(Heap *heap) { while (heap->size > 1) { Node *left = get_min_node(heap); Node *right = get_min_node(heap); Node *parent = new_node(left->value + right->value, '\0'); parent->left = left; parent->right = right; insert_node(heap, parent); } } void print_codes(Node *root, char code[], int index) { if (root == NULL) { return; } if (root->ch != '\0') { code[index] = '\0'; printf("%c: %s\n", root->ch, code); } code[index] = '0'; print_codes(root->left, code, index + 1); code[index] = '1'; print_codes(root->right, code, index + 1); } void huffman_codes(char *input) { Heap *heap = new_heap(); int freq[MAX_NODES] = {0}; for (int i = 0; i < strlen(input); i++) { freq[input[i]]++; } for (int i = 0; i < MAX_NODES; i++) { if (freq[i] > 0) { insert_node(heap, new_node(freq[i], i)); } } build_tree(heap); char code[MAX_NODES]; printf("Huffman Codes:\n"); print_codes(heap->nodes[1], code, 0); } int main() { char input[] = "hello world"; huffman_codes(input); return 0; } ``` 在上述代码中,我们定义了一个节点结构体(Node)和一个堆结构体(Heap)。我们使用堆来保存哈夫曼树的节点,在构建哈夫曼树时,我们将频率最小的两个节点合并为一个节点,并将其插入到堆中。构建完成后,我们使用递归的方式遍历哈夫曼树获取每个字符的编码,最后输出所有字符的哈夫曼编码。
阅读全文

相关推荐

dsw
#include #include #include #include using namespace std; # define MaxN 100//初始设定的最大结点数 # define MaxC 1000//最大编码长度 # define ImpossibleWeight 10000//结点不可能达到的权值 # define n 26//字符集的个数 //-----------哈夫曼树的结点结构类型定义----------- typedef struct //定义哈夫曼树各结点 { int weight;//权值 int parent;//双亲结点下标 int lchild;//左孩子结点下标 int rchild;//右孩子结点下标 }HTNode,*HuffmanTree;//动态分配数组存储哈夫曼树 typedef char**HuffmanCode;//动态分配数组存储哈夫曼编码表 //-------全局变量-------- HuffmanTree HT; HuffmanCode HC; int *w;//权值数组 //const int n=26;//字符集的个数 char *info;//字符值数组 int flag=0;//初始化标记 //********************************************************************** //初始化函数 //函数功能: 从终端读入字符集大小n , 以及n个字符和n个权值,建立哈夫曼树,并将它存于文件hfmTree中 //函数参数: //向量HT的前n个分量表示叶子结点,最后一个分量表示根结点,各字符的编码长度不等,所以按实际长度动态分配空间 void Select(HuffmanTree t,int i,int &s1,int &s2) { //s1为最小的两个值中序号最小的那个 int j; int k=ImpossibleWeight;//k的初值为不可能达到的最大权值 for(j=1;j<=i;j++) { if(t[j].weight<k&&t[j].parent==0) {k=t[j].weight; s1=j;} } t[s1].parent=1; k=ImpossibleWeight; for(j=1;j<=i;j++) { if(t[j].weight0),构造哈夫曼树HT,并求出n个字符的哈弗曼编码HC { int i,m,c,s1,s2,start,f; HuffmanTree p; char* cd; if(num<=1) return; m=2*num-1;//m为结点数,一棵有n个叶子结点的哈夫曼树共有2n-1个结点,可以存储在一个大小为2n-1的一维数组中 HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode));//0号单元未用 //--------初始化哈弗曼树------- for(p=HT+1,i=1;iweight=*w; p->parent=0; p->lchild=0; p->rchild=0; } for(i=num+1;iweight=0; p->parent=0; p->lchild=0; p->rchild=0; } //--------建哈夫曼树------------- for(i=num+1;i<=m;i++) { Select(HT,i-1,s1,s2);//在HT[1...i-1]选择parent为0且weight最小的两个结点,其序号分别为s1和s2 HT[s1].parent=i; HT[s2].parent=i; HT[i].lchild=s1; HT[i].rchild=s2;//左孩子权值小,右孩子权值大 HT[i].weight=HT[s1].weight+HT[s2].weight; } //-------从叶子到根逆向求每个字符的哈弗曼编码-------- HC=(HuffmanCode)malloc((num+1)*sizeof(char *));//指针数组:分配n个字符编码的头指针向量 cd=(char*)malloc(n*sizeof(char*));//分配求编码的工作空间 cd[n-1]='\0';//编码结束符 for(i=1;i<=n;i++)//逐个字符求哈弗曼编码 { start=n-1;//编码结束符位置 for(c=i,f=HT[i].parent;f!=0;c=f,f=HT[f].parent)//从叶子到跟逆向求哈弗曼编码 if(HT[f].lchild==c) cd[--start]='0';//判断是左孩子还是右孩子(左为0右为1) else cd[--start]='1'; HC[i]=(char*)malloc((num-start)*sizeof(char*));//按所需长度分配空间 int j,h; strcpy(HC[i],&cd[start]); } free(cd); } //****************初始化函数****************** void Initialization() { flag=1;//标记为已初始化 int i; w=(int*)malloc(n*sizeof(int));//为26个字符权值分配空间 info=(char*)malloc(n*sizeof(char));//为26个字符分配空间 ifstream infile("ABC.txt",ios::in); if(!infile) { cerr<<"打开失败"<<endl; exit(1); } for(i=0;i>info[i]; infile>>w[i]; } infile.close(); cout<<"读入字符成功!"<<endl; HuffmanCoding(HT,HC,w,n); //------------打印编码----------- cout<<"依次显示各个字符的值,权值或频度,编码如下"<<endl; cout<<"字符"<<setw(6)<<"权值"<<setw(11)<<"编码"<<endl; for(i=0;i<n;i++) { cout<<setw(3)<<info[i]; cout<<setw(6)<<w[i]<<setw(12)<<HC[i+1]<<endl; } //---------将建好的哈夫曼树写入文件------------ cout<<"下面将哈夫曼树写入文件"<<endl; ofstream outfile("hfmTree.txt",ios::out); if(!outfile) { cerr<<"打开失败"<<endl; exit(1); } for(i=0;i<n;i++,w++) { outfile<<info[i]<<" "; outfile<<w[i]<<" "; outfile<<HC[i+1]<<" "; } outfile.close(); cout<<"已经将字符与对应的权值,编码写入根目录下文件hfmTree.txt"<<endl; } //*****************输入待编码字符函数************************* void Input() { char string[100]; ofstream outfile("ToBeTran.txt",ios::out); if(!outfile) { cerr<<"打开失败"<<endl; exit(1); } cout<<"请输入你想要编码的字符串(字符个数应小于100),以#结束"<>string; for(int i=0;string[i]!='\0';i++) { if(string[i]=='\0') break; outfile<<string[i]; } cout<<"获取报文成功"<<endl; outfile.close(); cout<<"------"<<"已经将报文存入根目录下的ToBeTran.txt文件"<<endl; } //******************编码函数**************** void Encoding() { int i,j; char*string; string=(char*)malloc(MaxN*sizeof(char)); cout<<"下面对根目录下的ToBeTran.txt文件中的字符进行编码"<<endl; ifstream infile("ToBeTran.txt",ios::in); if(!infile) { cerr<<"打开失败"<<endl; exit(1); } for(i=0;i>string[i]; } for(i=0;i<100;i++) if(string[i]!='#') cout<<string[i]; else break; infile.close(); ofstream outfile("CodeFile.txt",ios::out); if(!outfile) { cerr<<"打开失败"<<endl; exit(1); } for(i=0;string[i]!='#';i++) { for(j=0;j<n;j++) { if(string[i]==info[j]) outfile<<HC[j+1]; } } outfile<<'#'; outfile.close(); free(string); cout<<"编码完成------"; cout<<"编码已写入根目录下的文件CodeFile.txt中"<<endl; } //******************译码函数**************** void Decoding() { int j=0,i; char *code; code=(char*)malloc(MaxC*sizeof(char)); char*string; string=(char*)malloc(MaxN*sizeof(char)); cout<<"下面对根目录下的CodeFile.txt文件中的代码进行译码"<<endl; ifstream infile("CodeFile.txt",ios::in); if(!infile) { cerr<<"打开失败"<<endl; exit(1); } for( i=0;i>code[i]; if(code[i]!='#') { cout<<code[i]; } else break; } infile.close(); int m=2*n-1; for(i=0;code[i-1]!='#';i++) { if(HT[m].lchild==0) { string[j]=info[m-1]; j++; m=2*n-1; i--; } else if(code[i]=='1') m=HT[m].rchild; else if(code[i]=='0') m=HT[m].lchild; } string[j]='#'; ofstream outfile("TextFile.txt",ios::out); if(!outfile) { cerr<<"打开失败"<<endl; exit(1); } cout<<"的译码为------"<<endl; for( i=0;string[i]!='#';i++) { outfile<<string[i]; cout<<string[i]; } outfile<<'#'; outfile.close(); cout<<"------译码完成------"<<endl; cout<<"译码结果已写入根目录下的文件TextFile.txt中"<<endl; free(code); free(string); } //*************打印编码函数**************** void Code_printing() { int i; char *code; code=(char*)malloc(MaxC*sizeof(char)); cout<<"下面打印根目录下文件CodeFile.txt中的编码"<<endl; ifstream infile("CodeFile.txt",ios::in); if(!infile) { cerr<<"打开失败"<<endl; exit(1); } for( i=0;i>code[i]; if(code[i]!='#') cout<<code[i]; else break; } infile.close(); cout<<endl; ofstream outfile("CodePrin.txt",ios::out); if(!outfile) { cerr<<"打开失败"<<endl; exit(1); } for(i=0;code[i]!='#';i++) { outfile<<code[i]; } outfile.close(); free(code); cout<<"------打印结束------"<<endl; cout<<"该字符形式的编码文件已写入文件CodePrin.txt中"<<endl; } //*************打印哈夫曼树函数**************** int numb=0; void coprint(HuffmanTree start,HuffmanTree HT) //start=ht+26这是一个递归算法 { if(start!=HT) { ofstream outfile("TreePrint.txt",ios::out); if(!outfile) { cerr<<"打开失败"<rchild,HT); //递归先序遍历 cout<<setw(5*numb)<weight<rchild==0) cout<<info[start-HT-1]<<endl; outfile<weight; coprint(HT+start->lchild,HT); numb--; outfile.close(); } } void Tree_printing(HuffmanTree HT,int num) { HuffmanTree p; p=HT+2*num-1; //p=HT+26 cout<<"下面打印赫夫曼树"<<endl; coprint(p,HT); //p=HT+26 cout<<"打印工作结束"<<endl; } //*************主函数************************** int main() { char choice; do{ cout<<"************哈弗曼编/译码器系统***************"<<endl; cout<<"请选择您所需功能:"<<endl; cout<<":初始化哈弗曼树"<<endl; cout<<":输入待编码字符串"<<endl; cout<<":利用已建好的哈夫曼树进行编码"<<endl; cout<<":利用已建好的哈夫曼树进行译码"<<endl; cout<<":打印代码文件"<<endl; cout<<":打印哈夫曼树"<<endl; cout<<":退出"<<endl; if(flag==0) { cout<<"请先初始化哈夫曼树,输入I"<<endl; cout<<""<>choice; switch(choice) { case 'I':Initialization();break; case 'W':Input();break; case 'E':Encoding();break; case 'D':Decoding();break; case 'P':Code_printing();break; case 'T':Tree_printing(HT,n);break; case 'Q':;break; default:cout<<"输入的命令出错,请重新输入!"<<endl; } }while(choice!='Q'); free(w); free(info); free(HT); free(HC); system("pause"); return 0; }

最新推荐

recommend-type

C语言实现哈夫曼树的构建

哈夫曼树的构建与C语言实现 哈夫曼树是一种特殊的二叉树,它的权值越小,越靠近根节点。哈夫曼树的构建是数据压缩和编码的重要组件。下面是哈夫曼树的构建与C语言实现的相关知识点: 一、哈夫曼树的定义 哈夫曼...
recommend-type

数据结构课程设计_哈夫曼树

2. 哈夫曼编码:利用哈夫曼树对文本文件进行编码,结果存储在CodeFile中,并在终端上以紧凑格式展示,每行显示50个编码。 3. 哈夫曼解码:从CodeFile中读取编码,利用哈夫曼树进行解码,结果写入TextFile中。 实现...
recommend-type

《CSS样式表行为手册》中文chm最新版本

CSS样式表里重点讲述“行为”功能的一本CHM参考手册,很实用方便,内容也很丰富,收藏一下哦!
recommend-type

火炬连体网络在MNIST的2D嵌入实现示例

资源摘要信息:"Siamese网络是一种特殊的神经网络,主要用于度量学习任务中,例如人脸验证、签名识别或任何需要判断两个输入是否相似的场景。本资源中的实现例子是在MNIST数据集上训练的,MNIST是一个包含了手写数字的大型数据集,广泛用于训练各种图像处理系统。在这个例子中,Siamese网络被用来将手写数字图像嵌入到2D空间中,同时保留它们之间的相似性信息。通过这个过程,数字图像能够被映射到一个欧几里得空间,其中相似的图像在空间上彼此接近,不相似的图像则相对远离。 具体到技术层面,Siamese网络由两个相同的子网络构成,这两个子网络共享权重并且并行处理两个不同的输入。在本例中,这两个子网络可能被设计为卷积神经网络(CNN),因为CNN在图像识别任务中表现出色。网络的输入是成对的手写数字图像,输出是一个相似性分数或者距离度量,表明这两个图像是否属于同一类别。 为了训练Siamese网络,需要定义一个损失函数来指导网络学习如何区分相似与不相似的输入对。常见的损失函数包括对比损失(Contrastive Loss)和三元组损失(Triplet Loss)。对比损失函数关注于同一类别的图像对(正样本对)以及不同类别的图像对(负样本对),鼓励网络减小正样本对的距离同时增加负样本对的距离。 在Lua语言环境中,Siamese网络的实现可以通过Lua的深度学习库,如Torch/LuaTorch,来构建。Torch/LuaTorch是一个强大的科学计算框架,它支持GPU加速,广泛应用于机器学习和深度学习领域。通过这个框架,开发者可以使用Lua语言定义模型结构、配置训练过程、执行前向和反向传播算法等。 资源的文件名称列表中的“siamese_network-master”暗示了一个主分支,它可能包含模型定义、训练脚本、测试脚本等。这个主分支中的代码结构可能包括以下部分: 1. 数据加载器(data_loader): 负责加载MNIST数据集并将图像对输入到网络中。 2. 模型定义(model.lua): 定义Siamese网络的结构,包括两个并行的子网络以及最后的相似性度量层。 3. 训练脚本(train.lua): 包含模型训练的过程,如前向传播、损失计算、反向传播和参数更新。 4. 测试脚本(test.lua): 用于评估训练好的模型在验证集或者测试集上的性能。 5. 配置文件(config.lua): 包含了网络结构和训练过程的超参数设置,如学习率、批量大小等。 Siamese网络在实际应用中可以广泛用于各种需要比较两个输入相似性的场合,例如医学图像分析、安全验证系统等。通过本资源中的示例,开发者可以深入理解Siamese网络的工作原理,并在自己的项目中实现类似的网络结构来解决实际问题。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧

![L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. L2正则化基础概念 在机器学习和统计建模中,L2正则化是一个广泛应用的技巧,用于改进模型的泛化能力。正则化是解决过拟
recommend-type

如何构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,并确保业务连续性规划的有效性?

构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,需要遵循一系列步骤来确保信息系统的安全性和业务连续性规划的有效性。首先,组织需要明确信息安全事件的定义,理解信息安全事态和信息安全事件的区别,并建立事件分类和分级机制。 参考资源链接:[信息安全事件管理:策略与响应指南](https://wenku.csdn.net/doc/5f6b2umknn?spm=1055.2569.3001.10343) 依照GB/T19716标准,组织应制定信息安全事件管理策略,明确组织内各个层级的角色与职责。此外,需要设置信息安全事件响应组(ISIRT),并为其配备必要的资源、
recommend-type

Angular插件增强Application Insights JavaScript SDK功能

资源摘要信息:"Microsoft Application Insights JavaScript SDK-Angular插件" 知识点详细说明: 1. 插件用途与功能: Microsoft Application Insights JavaScript SDK-Angular插件主要用途在于增强Application Insights的Javascript SDK在Angular应用程序中的功能性。通过使用该插件,开发者可以轻松地在Angular项目中实现对特定事件的监控和数据收集,其中包括: - 跟踪路由器更改:插件能够检测和报告Angular路由的变化事件,有助于开发者理解用户如何与应用程序的导航功能互动。 - 跟踪未捕获的异常:该插件可以捕获并记录所有在Angular应用中未被捕获的异常,从而帮助开发团队快速定位和解决生产环境中的问题。 2. 兼容性问题: 在使用Angular插件时,必须注意其与es3不兼容的限制。es3(ECMAScript 3)是一种较旧的JavaScript标准,已广泛被es5及更新的标准所替代。因此,当开发Angular应用时,需要确保项目使用的是兼容现代JavaScript标准的构建配置。 3. 安装与入门: 要开始使用Application Insights Angular插件,开发者需要遵循几个简单的步骤: - 首先,通过npm(Node.js的包管理器)安装Application Insights Angular插件包。具体命令为:npm install @microsoft/applicationinsights-angularplugin-js。 - 接下来,开发者需要在Angular应用的适当组件或服务中设置Application Insights实例。这一过程涉及到了导入相关的类和方法,并根据Application Insights的官方文档进行配置。 4. 基本用法示例: 文档中提到的“基本用法”部分给出的示例代码展示了如何在Angular应用中设置Application Insights实例。示例中首先通过import语句引入了Angular框架的Component装饰器以及Application Insights的类。然后,通过Component装饰器定义了一个Angular组件,这个组件是应用的一个基本单元,负责处理视图和用户交互。在组件类中,开发者可以设置Application Insights的实例,并将插件添加到实例中,从而启用特定的功能。 5. TypeScript标签的含义: TypeScript是JavaScript的一个超集,它添加了类型系统和一些其他特性,以帮助开发更大型的JavaScript应用。使用TypeScript可以提高代码的可读性和可维护性,并且可以利用TypeScript提供的强类型特性来在编译阶段就发现潜在的错误。文档中提到的标签"TypeScript"强调了该插件及其示例代码是用TypeScript编写的,因此在实际应用中也需要以TypeScript来开发和维护。 6. 压缩包子文件的文件名称列表: 在实际的项目部署中,可能会用到压缩包子文件(通常是一些JavaScript库的压缩和打包后的文件)。在本例中,"applicationinsights-angularplugin-js-main"很可能是该插件主要的入口文件或者压缩包文件的名称。在开发过程中,开发者需要确保引用了正确的文件,以便将插件的功能正确地集成到项目中。 总结而言,Application Insights Angular插件是为了加强在Angular应用中使用Application Insights Javascript SDK的能力,帮助开发者更好地监控和分析应用的运行情况。通过使用该插件,可以跟踪路由器更改和未捕获异常等关键信息。安装与配置过程简单明了,但是需要注意兼容性问题以及正确引用文件,以确保插件能够顺利工作。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

L1正则化模型诊断指南:如何检查模型假设与识别异常值(诊断流程+案例研究)

![L1正则化模型诊断指南:如何检查模型假设与识别异常值(诊断流程+案例研究)](https://www.dmitrymakarov.ru/wp-content/uploads/2022/10/lr_lev_inf-1024x578.jpg) # 1. L1正则化模型概述 L1正则化,也被称为Lasso回归,是一种用于模型特征选择和复杂度控制的方法。它通过在损失函数中加入与模型权重相关的L1惩罚项来实现。L1正则化的作用机制是引导某些模型参数缩小至零,使得模型在学习过程中具有自动特征选择的功能,因此能够产生更加稀疏的模型。本章将从L1正则化的基础概念出发,逐步深入到其在机器学习中的应用和优势