pytorch实现svm特征10分类
时间: 2023-09-28 21:12:33 浏览: 119
以下是使用PyTorch实现SVM特征10分类的代码示例:
首先,我们导入必要的库和数据集:
```
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
# 加载MNIST数据集
train_data = datasets.MNIST(root='./data', train=True, download=True, transform=transforms.ToTensor())
test_data = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.ToTensor())
```
接下来,我们定义SVM模型:
```
class SVM(nn.Module):
def __init__(self):
super(SVM, self).__init__()
self.linear = nn.Linear(784, 10)
def forward(self, x):
x = x.view(-1, 784)
return self.linear(x)
```
然后,我们定义训练函数和测试函数:
```
def train(model, train_loader, optimizer, criterion):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
def test(model, test_loader, criterion):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss, correct, len(test_loader.dataset), accuracy))
```
最后,我们定义数据加载器、优化器和损失函数,并开始训练:
```
# 定义数据加载器
train_loader = torch.utils.data.DataLoader(train_data, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=64, shuffle=False)
# 定义优化器和损失函数
model = SVM()
optimizer = optim.SGD(model.parameters(), lr=0.01)
criterion = nn.CrossEntropyLoss()
# 开始训练
for epoch in range(10):
train(model, train_loader, optimizer, criterion)
test(model, test_loader, criterion)
```
这样,我们就可以使用PyTorch实现SVM特征10分类了。
阅读全文