unity 实现经纬度和utm坐标转换代码

时间: 2023-09-12 15:10:44 浏览: 62
在Unity中实现经纬度和UTM坐标的转换需要使用到第三方库,例如DotSpatial。以下是使用DotSpatial实现经纬度和UTM坐标转换的示例代码: ```csharp using DotSpatial.Projections; public class CoordinateConversion : MonoBehaviour { private const double EQUATORIAL_RADIUS = 6378137.0; // 地球赤道半径 private const double POLAR_RADIUS = 6356752.3142; // 地球极半径 [SerializeField] private double _longitude; // 经度 [SerializeField] private double _latitude; // 纬度 [SerializeField] private double _easting; // UTM东移量 [SerializeField] private double _northing; // UTM北移量 [SerializeField] private int _zoneNumber; // UTM带号 [SerializeField] private char _zoneLetter; // UTM带字母 private void Start() { // 将经纬度转换为UTM坐标 double[] utmCoords = new double[2]; ProjectionInfo wgs84 = KnownCoordinateSystems.Geographic.World.WGS1984; ProjectionInfo utm = KnownCoordinateSystems.Projected.UtmWgs1984.WGS1984UTMZone51N; Reproject.ReprojectPoints(new[] { _longitude, _latitude }, null, wgs84, utm, 0, 1); _easting = utmCoords[0]; _northing = utmCoords[1]; _zoneNumber = (int)utm.GetParameterValue("Zone"); _zoneLetter = UtmTools.GetZoneLetter(_latitude); // 将UTM坐标转换为经纬度 double[] geoCoords = new double[2]; ProjectionInfo utm2 = KnownCoordinateSystems.Projected.UtmWgs1984.WGS1984UTMZone51N; ProjectionInfo wgs842 = KnownCoordinateSystems.Geographic.World.WGS1984; Reproject.ReprojectPoints(new[] { _easting, _northing }, null, utm2, wgs842, 0, 1); _longitude = geoCoords[0]; _latitude = geoCoords[1]; } // 获取UTM带字母 public static char GetZoneLetter(double latitude) { if (latitude >= 84.0 || latitude < -80.0) return 'Z'; else { int zone = (int)((latitude + 80.0) / 8.0) + 1; return (char)('A' + ((zone - 1) % 26)); } } } ``` 在上述示例代码中,我们使用了DotSpatial库中的`ProjectionInfo`和`Reproject`类。`ProjectionInfo`类是一个投影信息类,用于表示不同的地理坐标系和投影坐标系,并提供了一些常用的坐标系信息,例如WGS 1984、UTM投影等。`Reproject`类是一个投影转换类,用于实现不同坐标系之间的转换。 需要注意的是,在转换经纬度和UTM坐标时,需要指定正确的投影坐标系。在上述示例代码中,我们使用了`WGS1984`和`WGS1984UTMZone51N`两个投影坐标系分别表示WGS 1984地理坐标系和UTM投影坐标系,并通过`Reproject.ReprojectPoints`方法实现了坐标系之间的转换。

相关推荐

最新推荐

recommend-type

Unity代码实现序列帧动画播放器

该实现序列帧动画播放器的代码可以同时支持 UGUI 的 Image 组件和 Unity2D 的 SpriteRenderer 组件,为开发者提供了更多的选择和灵活性。同时,该代码也提供了多种属性和方法来控制动画的播放,为开发者提供了更多...
recommend-type

在Unity中实现动画的正反播放代码

主要介绍了在Unity中实现动画的正反播放代码,非常的实用,这里推荐给大家,希望大家能够喜欢。
recommend-type

Unity实现图片轮播组件

1. 使用 Unity 实现图片轮播组件:在 Unity 中,可以使用 UI 组件和脚本来实现图片轮播组件。可以使用 RectTransform 组件来布局图片,并使用 UIButton 组件来实现切页按钮的功能。 2. 图片轮播组件的主要功能:...
recommend-type

Unity实现跑马灯抽奖效果

在本文中,我们将详细介绍如何使用Unity实现跑马灯抽奖效果,包括代码实现和思路介绍。 一、使用Unity实现跑马灯抽奖效果的思路 实现跑马灯抽奖效果的思路是通过使用NGUI+Dotween插件来实现图片的移动和蒙版效果。...
recommend-type

unity实现屏幕上写字效果

Unity 实现屏幕上写字效果是游戏开发和图形设计中常见的一种视觉效果。该效果可以在屏幕上实时生成笔迹,提供给用户一种交互体验。下面是实现该效果的详细介绍和相关知识点: 一、相关概念 1. RawImage:RawImage ...
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。