figure(2) plot(1: N, T_test, 'r-o', 1: N, T_sim2, 'g-s', 'LineWidth', 1) legend('真实值', 'Bayes-CNN预测值') xlabel('预测样本') ylabel('预测结果') string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']}; title(string) grid save net1 net ps_input num_dim

时间: 2023-06-17 19:04:14 浏览: 70
这段代码是用于绘制两组数据的折线图,并且添加了图例、横纵坐标标签和标题等元素,同时也保存了神经网络的参数和输入数据。具体的代码解释如下: - `figure(2)`:创建一个新的图形窗口,并且将其设为当前图形窗口,数字2表示窗口的编号。 - `plot(1: N, T_test, 'r-o', 1: N, T_sim2, 'g-s', 'LineWidth', 1)`:画出两条折线,第一条是红色的圆点线,表示真实值;第二条是绿色的正方形线,表示Bayes-CNN预测值。'LineWidth', 1 表示线的宽度为1个单位。 - `legend('真实值', 'Bayes-CNN预测值')`:添加图例,分别对应两条折线的含义。 - `xlabel('预测样本')`:添加横轴标签,表示样本的编号。 - `ylabel('预测结果')`:添加纵轴标签,表示预测结果的数值。 - `string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']}`:创建一个字符串数组,用于设置图形的标题。第一行表示标题的主要内容,第二行表示准确率的值,其中 `num2str(error2)` 将错误率转换为字符串类型。 - `title(string)`:添加标题,并且将标题文本设置为上面创建的字符串数组。 - `grid`:添加网格线。 - `save net1 net ps_input num_dim`:保存神经网络的参数和输入数据到文件中,以备以后使用。其中 `net1` 表示神经网络的名称,`net` 表示神经网络的参数,`ps_input` 表示输入数据,`num_dim` 表示输入数据的维度。

相关推荐

% 载入数据 res = xlsread('Copy_of_数据集.xlsx'); input = res((1:120), 2:6)'; % 载入输入数据 output = res((1:120), 7:9)'; % 载入输出数据 % 划分训练集和测试集 input_train = input(:, 1:80); output_train = output(:, 1:80); input_test = input(:, 81:100); output_test = output(:, 81:100); % 归一化 [input_train_n, input_ps] = mapminmax(input_train, -1, 1); [output_train_n, output_ps] = mapminmax(output_train, -1, 1); % 建立模型 input_num = size(input_train_n, 1); % 输入层节点数量 hidden_num = 10; % 隐含层节点数量 output_num = size(output_train_n, 1); % 输出层节点数量 net = newff(input_train_n, output_train_n, hidden_num, {'tansig','purelin'}, 'trainlm'); net.trainParam.epochs = 15000; net.trainParam.lr = 0.01; net.trainParam.goal = 0.0001; % 训练模型 [net, tr] = train(net, input_train_n, output_train_n); % 测试模型 input_test_n = mapminmax('apply', input_test, input_ps); output_test_n = mapminmax('apply', output_test, output_ps); output_pred_n = sim(net, input_test_n); %%反归一化 output_test_pred = mapminmax('reverse', output_pred_n, output_ps); output_test_pred = round(output_test_pred); % 四舍五入取整 % 使用测试集评估网络性能 pos_pred = net_pos(test_set(:, 1:input_size)'); % 预测位置 ori_pred = net_ori(test_set(:, 1:input_size)'); % 预测姿态 pos_error = pos_pred - test_set(:, input_size+1:input_size+output_size); % 位置误差 ori_error = ori_pred - test_set(:, input_size+output_size+1:end); % 姿态误差 mse_pos = mean(pos_error.^2); % 位置均方误差 mse_ori = mean(ori_error.^2); % 姿态均方误差 % 使用附加测试集评估网络性能 additional_test_data = [theta([6, 12, 18], :), actual_poses([6, 12, 18], :)]; pos_pred = net_pos(additional_test_data(:, 1:input_size)'); % 预测位置 ori_pred = net_ori(additional_test_data(:, 1:input_size)'); % 预测姿态 pos_error = pos_pred - additional_test_data(:, input_size+1:input_size+output_size); % 位置误差 ori_error = ori_pred - additional_test_data(:, input_size+output_size+1:end); % 姿态误差 mse_pos_additional = mean(pos_error.^2); % 位置均方误差 mse_ori_additional = mean(ori_error.^2); % 姿态均方误差 %%绘制预测结果和真实结果的对比图 figure; plot(output_test(1,:), 'bo-'); hold on; plot(output_test_pred(1,:), 'r*-'); legend('真实结果', '预测结果'); xlabel('样本编号'); ylabel('输出值'); title('预测结果和真实结果'); 帮我修改一下这段代码

% 载入数据 data = xlsread('Copy_of_数据集.xlsx'); input = data((1:120), 2:6)'; % 载入输入数据 output = data((1:120), 7:9)'; % 载入输出数据 % 划分训练集和测试集 input_train = input(:, 1:80); output_train = output(:, 1:80); input_test = input(:, 81:100); output_test = output(:, 81:100); % 归一化 [input_train_n, input_ps] = mapminmax(input_train, -1, 1); [output_train_n, output_ps] = mapminmax(output_train, -1, 1); % 建立模型 input_size = size(input_train_n, 1); hidden_size = 10; output_size = size(output_train_n, 1); net = newff(input_train_n, output_train_n, hidden_size, {'tansig','purelin'}, 'trainlm'); net.trainParam.epochs = 15000; net.trainParam.lr = 0.01; net.trainParam.goal = 0.0001; % 训练模型 [net, tr] = train(net, input_train_n, output_train_n); % 测试模型 input_test_n = mapminmax('apply', input_test, input_ps); output_test_n = mapminmax('apply', output_test, output_ps); output_pred_n = sim(net, input_test_n); %% 反归一化 output_test_pred = mapminmax('reverse', output_pred_n, output_ps); output_test_pred = round(output_test_pred); % 四舍五入取整 % 使用测试集评估网络性能 pos_pred = net_pos(input_test_n); % 预测位置 ori_pred = net_ori(input_test_n); % 预测姿态 pos_error = pos_pred - output_test(1,:); % 位置误差 ori_error = ori_pred - output_test(2:3,:); % 姿态误差 mse_pos = mean(pos_error.^2); % 位置均方误差 mse_ori = mean(ori_error.^2); % 姿态均方误差 % 使用附加测试集评估网络性能 additional_test_data = [theta([6, 12, 18], :), actual_poses([6, 12, 18], :)]; pos_pred = net_pos(mapminmax('apply', additional_test_data(:, 1:input_size), input_ps)); % 预测位置 ori_pred = net_ori(mapminmax('apply', additional_test_data(:, 1:input_size), input_ps)); % 预测姿态 pos_error = pos_pred - additional_test_data(:, input_size+1:input_size+output_size); % 位置误差 ori_error = ori_pred - additional_test_data(:, input_size+output_size+1:end); % 姿态误差 mse_pos_additional = mean(pos_error.^2); % 位置均方误差 mse_ori_additional = mean(ori_error.^2); % 姿态均方误差 % 绘制预测结果和真实结果的对比图 figure; plot(output_test(1,:), 'bo-'); hold on; plot(output_test_pred(1,:), 'r*-'); legend('真实结果', '预测结果'); xlabel('样本编号'); ylabel('输出值'); title('预测结果和真实结果');这段代码有误,修改一下给出我正确的代码

clear all; clc; % 载入数据 data = xlsread('Copy_of_数据集.xlsx'); input = data((1:120), 2:6)'; output = data((1:120), 7:9)'; % 划分训练集和测试集 input_train = input(:, 1:80); output_train = output(:, 1:80); input_test = input(:, 81:100); output_test = output(:, 81:100); % 归一化 [input_train_n, input_ps] = mapminmax(input_train, -1, 1); [output_train_n, output_ps] = mapminmax(output_train, -1, 1); % 建立模型 input_size = size(input_train_n, 1); hidden_size = 10; output_size = size(output_train_n, 1); net = newff(input_train_n, output_train_n, hidden_size, {'tansig','purelin'}, 'trainlm'); net.trainParam.epochs = 15000; net.trainParam.lr = 0.01; net.trainParam.goal = 0.0001; % 训练模型 [net, tr] = train(net, input_train_n, output_train_n); % 测试模型 input_test_n = mapminmax('apply', input_test, input_ps); output_test_n = mapminmax('apply', output_test, output_ps); output_pred_n = sim(net, input_test_n); %% 反归一化 output_test_pred = mapminmax('reverse', output_pred_n, output_ps); output_test_pred = round(output_test_pred); % 四舍五入取整 % 使用测试集评估网络性能 pos_pred = sim(net, input_test_n); % 预测位置 ori_pred = sim(net, input_test_n); % 预测姿态 pos_error = pos_pred - output_test(1,:); % 位置误差 ori_error = ori_pred - output_test(1,:); % 姿态误差 mse_pos = mean(pos_error.^2); % 位置均方误差 mse_ori = mean(ori_error.^2); % 姿态均方误差 % 使用附加测试集评估网络性能 additional_test_data = [theta([6, 12, 18], :), actual_poses([6, 12, 18], :)]; pos_pred = sim(net, mapminmax('apply', additional_test_data(:, 1:input_size), input_ps)); % 预测位置 ori_pred = sim(net, mapminmax('apply', additional_test_data(:, 1:input_size), input_ps)); % 预测姿态 pos_error = pos_pred - additional_test_data(:, input_size+1:input_size+output_size); % 位置误差 ori_error = ori_pred - additional_test_data(:, input_size+output_size+1:end); % 姿态误差 mse_pos_additional = mean(pos_error.^2); % 位置均方误差 mse_ori_additional = mean(ori_error.^2); % 姿态均方误差 % 调整维度为 2 x 10 % 绘制预测结果和真实结果的对比图 figure; plot(output_test(1,:), 'bo-'); hold on; plot(output_test_pred(1,:)', 'r*-'); % 注意转置 legend('真实结果', '预测结果'); xlabel('样本编号'); ylabel('输出值'); title('预测结果和真实结果');则合格代码报错帮我修改正确

res = xlsread('补偿.xlsx'); % temp = randperm(102); % input=res(temp(1: 20), 2: 6)'; input=res((1: 20), 7: 12)'; output=res((1: 20), 2 :4)'; %载入输出数据 %% input_train = input(1:15); output_train =output(1:15); input_test = input(5:25); output_test =output(5:25); inputnum=3; hiddennum=10;outputnum=2; [inputn,inputps]=mapminmax(input_train,-1,1);%归一化到[-1,1]之间,inputps [outputn,outputps]=mapminmax(output_train,-1,1); net=newff(inputn,outputn,hiddennum,{'tansig','purelin'},'trainlm'); W1= net. iw{1, 1};%输入层到中间层的权值 B1 = net.b{1};W2 = net.lw{2,1}; B2 = net. b{2}; net.trainParam.epochs=2000; net.trainParam.lr=0.0001; net.trainParam.goal=0.001; net=train(net,inputn,outputn);inputn,outputn inputn_test=mapminmax('apply',input_test,inputps);an=sim(net,inputn_test); test_simu=mapminmax('reverse',an,outputps); error=test_simu-output_test;figure('units','normalized','position',[0.119 0.2 0.38 0.5]) plot(output_test/70,'bo-') hold on plot(test_simu/70,'r*-') hold on % plot(error,'square','MarkerFaceColor','b') % legend('理论位姿','期望位姿','误差') legend('理论位姿','期望位姿') xlabel('数据组数') ylabel('样本值') % title('BP神经网络测试集的预测值与实际值对比图') an = mapminmax('reverse', an, outputps); % 将预测结果反归一化 output_test = mapminmax('reverse', output_test, outputps); % 将真实结果反归一化 figure; plot(output_test(1,:), 'b-o'); hold on; plot(an(1,:), 'r-'); legend('真实结果', '预测结果'); xlabel('样本编号'); ylabel('输出值'); title('预测结果和真实结果');这段代码帮我修改一下更能体现BP补偿算法

res = xlsread('Copy_of_数据集.xlsx');input=res((1: 120), 2: 6)'; %载入输入数据 output=res((1: 120), 7 :9)'; %载入输出数据input_这段代码的预测结果为什么都是0train = input(1:80); outest_simu=mapminmax('reverse',an,outputps); tput_train =output(1:80); input_test = input(80:100); output_test =output(80:100); %节点个数 inputnum=3; % 输入层节点数量 hiddennum=10;% 隐含层节点数量 outputnum=2; % 输出层节点数量[inputn,inputps]=mapminmax(input_train,-1,1);%归一化到[-1,1]之间,inputps用来作下一次同样的归一化 [outputn,outputps]=mapminmax(output_train,-1,1);net=newff(inputn,outputn,hiddennum,{'tansig','purelin'},'trainlm');% 建立模型,传递函数使用purelin,采用梯度下降法训练 W1= net. iw{1, 1};%输入层到中间层的权值 B1 = net.b{1};%中间各层神经元阈值 W2 = net.lw{2,1};%中间层到输出层的权值 B2 = net. b{2};%输出层各神经元阈值net.trainParam.epochs=15000; net.trainParam.lr=0.01; net.trainParam.goal=0.0001; net=train(net,inputn,outputn);inputn_test=mapminmax('apply',input_test,inputps);an=sim(net,inputn_test);error=test_simu-output_test; figure('units','normalized','position',[0.119 0.2 0.38 0.5]) plot(output_test,'bo-') hold on plot(test_simu,'r*-') hold on.an = mapminmax('reverse', an, outputps); % 将预测结果反归一化 output_test = mapminmax('reverse', output_test, outputps); % 将真实结果反归一化 figure; plot(output_test(1,:), 'b-o'); hold on; plot(an(1,:), 'r-*'); legend('真实结果', '预测结果'); xlabel('样本编号'); ylabel('输出值'); title('预测结果和真实结果');

res = xlsread('Copy_of_数据集.xlsx'); % temp = randperm(102); % input=res(temp(1: 80), 2: 6)'; input=res((1: 120), 2: 6)'; output=res((1: 120), 10 :11)'; input_train = input(1:80); output_train =output(1:80); input_test = input(80:100); output_test =output(80:100); %节点个数 inputnum=3; hiddennum=10;outputnum=2; [inputn,inputps]=mapminmax(input_train,-1,1); [outputn,outputps]=mapminmax(output_train,-1,1); net=newff(inputn,outputn,hiddennum,{'tansig','purelin'},'trainlm'); W1= net. iw{1, 1}; B1 = net.b{1}; W2 = net.lw{2,1};%中间层到输出层的权值 B2 = net. b{2};net.trainParam.epochs=15000; net.trainParam.lr=0.001; % 学习速率,这里设置为0.01 net.trainParam.goal=0.01; net=train(net,inputn,outputn);inputn_test=mapminmax('apply',input_test,inputps);an=sim(net,inputn_test); test_simu=mapminmax('reverse',an,outputps);error=test_simu-output_test; figure('units','normalized','position',[0.119 0.2 0.38 0.5]) plot(output_test/100,'bo-') hold on plot(test_simu/101,'r*-') hold on % plot(error,'square','MarkerFaceColor','b') % legend('理论位姿','期望位姿','误差') legend('理论位姿','期望位姿') xlabel('数据组数') ylabel('样本值') % title('BP神经网络测试集的预测值与实际值对比图') an = mapminmax('reverse', an, outputps); output_test = mapminmax('reverse', output_test, outputps); % 将真实结果反归一化 figure; plot(output_test(1,:), 'b-o'); hold on; plot(an(1,:), 'r-*'); legend('真实结果', '预测结果'); xlabel('样本编号'); ylabel('输出值'); title('预测结果和真实结果'); [c,l]=size(output_test);帮我绘制神经网络结构图中的输入层的神经元个数为3

解读一下 figure plot(T_train,T_train,'r-.','linewidth',2) ; hold on plot(T_train,T_sim1,'sr','LineWidth',2,'MarkerSize',8, ... 'MarkerEdgeColor', 'c', 'MarkerFaceColor', 'k') legend('\it y=x','预测值','location','southeast'); xlabel('负荷(kW)实际值') ylabel('负荷(kW)预测值') box off string = {['BP 训练集:(MAPE= ' num2str(MAPE1) ' MAPE = ' num2str(MAPE1) ')']}; title(string) %% 测试集 figure plot(T_test,T_test,'r-.','linewidth',2) ; hold on plot(T_test,T_sim2,'sr','LineWidth',2,'MarkerSize',8, ... 'MarkerEdgeColor', 'c', 'MarkerFaceColor', 'k') legend('\it y=x','预测值','location','southeast'); xlabel('负荷(kW)实际值') ylabel('负荷(kW)预测值') box off string = {['BP 测试集:(MAPE= ' num2str(MAPE2) ' MAPE = ' num2str(MAPE2) ')']}; title(string) %% RBFNN校正 input_train=data(1:L1,2:end)';% 输入 output_train=err1;% 输出 %% 测试集 input_test=data(L1+1:L2,2:end)';% 输入 output_test=err2;% 输出 %% 数据归一化 % 训练集 [inputn_train,inputps] = mapminmax(input_train); [outputn_train,outputps] = mapminmax(output_train); %创建RBF网络 goal=0.001;%误差目标 sp=0.3;%扩展常数 mn=50;%隐含层神经元最大数目 df=1;%训练过程中的显示频数 net=newrb(inputn_train,outputn_train,goal,sp,mn,df); Tn_output=sim(net,inputn_train); %仿真结果反归一化 RBFTrain_sim = mapminmax('reverse',Tn_output,outputps); %% 输入归一化 inputn_test = mapminmax('apply',input_test,inputps); %RBF预测 RBF_sim=sim(net,inputn_test); %% 网络输出反归一化 RBFTest_sim=mapminmax('reverse',RBF_sim,outputps);

最新推荐

recommend-type

基于Springboot + Mybatis框架实现的一个简易的商场购物系统.zip

基于springboot的java毕业&课程设计
recommend-type

用于 CNO 实验的 MATLAB 脚本.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

基于卷积神经网络的垃圾分类.zip

卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。
recommend-type

基于 Yolov5的检测模型

运行程序 1、测试.pt模型文件 1.在pycharm里打开下载的yolov5环境,在根目录打开runs文件,找到trains文件中的best_1.pt即为训练最优模型。 2.在根目录找到 detect.py 文件,修改代码221行默认路径至模型路径,222行路径更改至所需测试图片路径,点击运行。 2、测试.onnx模型文件 1.在pycharm里打开下载的yolov5环境,在根目录打开 export.py 文件,修改默认输出模型类型为onnx,选择best_1.pt输入模型,点击运行。 2.在根目录找到detect_onnx.py文件,修改代码221行默认路径至模型路径,222行路径更改至所需测试图片路径,点击运行。
recommend-type

郁郁苍苍---基于SpringBoot的多人社区项目.zip

基于springboot的java毕业&课程设计
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。