cost, grad= costFunction(initial_theta,X,y)
时间: 2023-06-24 13:06:46 浏览: 151
这段代码看起来是在调用 `costFunction` 函数,传入了初始参数 `initial_theta`、特征矩阵 `X` 和标签向量 `y`,并且将函数返回的代价值和梯度值分别赋值给 `cost` 和 `grad`。
可能的实现如下:
```python
def costFunction(theta, X, y):
# 计算代价函数和梯度
m = len(y)
h = sigmoid(X @ theta)
J = -1/m * (y.T @ np.log(h) + (1 - y).T @ np.log(1 - h))
grad = 1/m * X.T @ (h - y)
return J, grad
# 调用 costFunction
initial_theta = np.zeros((n, 1))
cost, grad = costFunction(initial_theta, X, y)
```
其中,`sigmoid` 函数是一个常用的逻辑斯蒂函数,实现如下:
```python
def sigmoid(z):
return 1 / (1 + np.exp(-z))
```
需要注意的是,这里的 `@` 符号表示矩阵乘法,`np.log` 表示自然对数。
相关问题
def gradientDescentnn(X,y,initial_nn_params,alpha,num_iters,Lambda,input_layer_size, hidden_layer_size, num_labels): #梯度下降优化网络 Theta1 = initial_nn_params[:((input_layer_size+1) * hidden_layer_size)].reshape(hidden_layer_size,input_layer_size+1) #初始化第一层权重 Theta2 = initial_nn_params[((input_layer_size +1)* hidden_layer_size ):].reshape(num_labels,hidden_layer_size+1) #初始化第二层权重 m=len(y) #样本数 J_history =[] #每次迭代后的代加 for i in range(num_iters): #遍历每一次迭代过程 nn_params = np.append(Theta1.flatten(),Theta2.flatten()) # cost, grad1, grad2 = nnCostFunction(nn_params,input_layer_size, hidden_layer_size, num_labels,X, y,Lambda)[3:] Theta1 = Theta1 - (alpha * grad1) Theta2 = Theta2 - (alpha * grad2) J_history.append(cost) nn_paramsFinal = np.append(Theta1.flatten(),Theta2.flatten()) return nn_paramsFinal , J_history
这是一个用于神经网络模型的梯度下降函数。它接受输入数据X、标签y、初始权重initial_nn_params、学习率alpha、迭代次数num_iters、正则化参数Lambda、输入层大小input_layer_size、隐藏层大小hidden_layer_size和输出层大小num_labels。在每个迭代步骤中,它计算代价函数的值,以及每层权重的梯度,并使用学习率和梯度来更新权重。最后,它返回更新后的权重和每个迭代步骤的代价函数值。
lambda = 1; costFunction = @(p) nnCostFunction(p, ... % 用训练样本计算最优参数 input_layer_size, ... hidden_layer_size, ... num_labels, X, y, lambda); [nn_params, cost] = fmincg(costFunction, initial_nn_params, options); Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ... hidden_layer_size, (input_layer_size + 1));%权重1 Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ... num_labels, (hidden_layer_size + 1));%权重2
这是一段代码,用于训练神经网络,并获取最优参数。
- lambda是正则化参数,用于控制过拟合程度。
- costFunction是一个匿名函数,用于计算神经网络的代价函数。其中,nnCostFunction函数用于计算神经网络的代价函数和梯度,返回值为代价J和梯度grad。
- fmincg函数是一个优化函数,用于寻找最优参数。其中,costFunction表示要最小化的函数,initial_nn_params表示初始参数,options表示训练选项。该函数会返回一个最优参数向量nn_params和一个包含每次迭代代价的向量cost。
- reshape函数用于将最优参数向量nn_params转换为权重矩阵Theta1和Theta2。其中,hidden_layer_size x (input_layer_size + 1)表示Theta1矩阵的大小,num_labels x (hidden_layer_size + 1)表示Theta2矩阵的大小。将nn_params向量的前一部分转换为Theta1矩阵,后一部分转换为Theta2矩阵。
最终,我们将会得到训练好的神经网络的权重矩阵Theta1和Theta2。
阅读全文