用python写一个残差网络
时间: 2023-01-28 15:15:34 浏览: 160
残差网络(Residual Network, ResNet)是一种深度神经网络, 它提出了一种跨越多层的链接(shortcut connections)的结构, 允许网络跨越较大的深度学习更多的特征, 从而解决了深度神经网络训练困难的问题。
下面是一个使用 Python 实现残差网络的示例:
```python
import torch
import torch.nn as nn
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.stride != 1 or x.size()[1] != out.size()[1]:
residual = self.conv2(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=10):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self.make_layer(block, 64, layers[0])
self.layer2 = self.make_layer(block, 128, layers[1], stride=2)
self.layer3 = self.make_layer(block, 256, layers[2], stride=2)
self.layer4 = self.make_layer(block
阅读全文