int maxDist = 0; for (int i = 1; i <= n; i++) { for (int j = i + 1; j <= n; j++) { int dist = dijkstra(G, i, j); if (dist > maxDist) { maxDist = dist; } } } System.out.println(maxDist);解释这段代码

时间: 2024-02-15 20:27:42 浏览: 28
这段代码是用于求解一个无向图G中任意两个节点之间的最长距离(即最长路径)。 首先,代码定义了一个变量maxDist表示最长距离,并将其初始化为0。 然后,代码使用两个for循环嵌套遍历所有的节点对(i,j),其中i从1到n,j从i+1到n。这样可以保证每个节点对只被遍历一次,而且不会出现重复计算的情况。 在每个节点对(i,j)的遍历过程中,代码调用了一个名为dijkstra的函数,该函数使用Dijkstra算法计算从节点i到节点j的最短距离,即路径长度。如果这个距离大于当前的最长距离maxDist,则将maxDist更新为这个距离。 最后,代码输出maxDist,即图G中任意两个节点之间的最长距离。 需要注意的是,这段代码并没有给出dijkstra函数的具体实现,因此无法确定它的时间复杂度和正确性。
相关问题

#include<iostream> #define OK 1 #define ERROR 0 #define OVERFLOW -2 #define MVNum 100 //最大顶点数 #define MaxInt 32767 using namespace std; typedef struct {//图的邻接矩阵存储表示 int vexnum,arcnum; //图的当前顶点数和边数 int vexs[MVNum]; //顶点表 int arcs[MVNum][MVNum]; //邻接矩阵 }AMGraph; int CreateUDN(AMGraph &G,int vexnum,int arcnum) {//采用邻接矩阵表示法,创建无向网G G.vexnum=vexnum; //输入总顶点数 G.arcnum=arcnum; //输入总边数 if(G.vexnum>MVNum) return ERROR; //超出最大顶点数则结束函数 int i,j,a,b,c; for(i=1;i<=G.vexnum;i++) G.vexs[i]=i; for(i=1;i<=G.vexnum;i++) //初始化邻接矩阵,边的权值均置为极大值 for(j=1;j<=G.vexnum;j++) G.arcs[i][j]=MaxInt; for(i=0;i<G.arcnum;i++) //顶点a和顶点b之间有一条长度为c的路 { cin>>a>>b>>c; G.arcs[a][b]=c; G.arcs[b][a]=c; } return OK; } void ShortPathMAX(AMGraph G,int v0) {//用Dijkstra算法求图G中距离顶点v0的最短路径长度最大的一个顶点 /**begin/ /**end/ } int main() { int n,m; while(cin>>n>>m) { if(n==0&&m==0) break; AMGraph G; CreateUDN(G,n,m); //创建无向网G int v; cin>>v; ShortPathMAX(G,v); //最长的最短路径的求解 } return 0; }补全代码,测试输入: 4 4 1 2 1 2 3 1 3 4 1 2 4 1 4 4 3 1 2 3 2 3 2 2 4 6 3 0 0 预期输出: 1 2 4 8

#include<iostream> #include<algorithm> #include<cstring> #define OK 1 #define ERROR 0 #define OVERFLOW -2 #define MVNum 100 //最大顶点数 #define MaxInt 32767 using namespace std; typedef struct {//图的邻接矩阵存储表示 int vexnum,arcnum; //图的当前顶点数和边数 int vexs[MVNum]; //顶点表 int arcs[MVNum][MVNum]; //邻接矩阵 }AMGraph; int CreateUDN(AMGraph &G,int vexnum,int arcnum) {//采用邻接矩阵表示法,创建无向网G G.vexnum=vexnum; //输入总顶点数 G.arcnum=arcnum; //输入总边数 if(G.vexnum>MVNum) return ERROR; //超出最大顶点数则结束函数 int i,j,a,b,c; for(i=1;i<=G.vexnum;i++) G.vexs[i]=i; for(i=1;i<=G.vexnum;i++) //初始化邻接矩阵,边的权值均置为极大值 for(j=1;j<=G.vexnum;j++) G.arcs[i][j]=MaxInt; for(i=0;i<G.arcnum;i++) //顶点a和顶点b之间有一条长度为c的路 { cin>>a>>b>>c; G.arcs[a][b]=c; G.arcs[b][a]=c; } return OK; } void ShortPathMAX(AMGraph G,int v0) {//用Dijkstra算法求图G中距离顶点v0的最短路径长度最大的一个顶点 int dist[MVNum];//存储源点v0到其他顶点的最短距离 bool visited[MVNum]={false};//记录顶点是否已被访问 memset(dist,0,sizeof(dist)); for(int i=1;i<=G.vexnum;i++)//初始化dist数组 if(i!=v0) dist[i]=MaxInt; for(int i=1;i<=G.vexnum;i++) //循环n次,每次找出一个顶点的最短路径 { int maxDist=-1,u; for(int j=1;j<=G.vexnum;j++) { if(!visited[j]&&dist[j]>maxDist) { maxDist=dist[j]; u=j; } } visited[u]=true; for(int v=1;v<=G.vexnum;v++) { if(!visited[v]&&G.arcs[u][v]<MaxInt) { int newDist=max(dist[u],G.arcs[u][v]); if(newDist<dist[v]) dist[v]=newDist; } } } for(int i=1;i<=G.vexnum;i++) if(dist[i]!=MaxInt) cout<<dist[i]<<" "; cout<<endl; } int main() { int n,m; while(cin>>n>>m) { if(n==0&&m==0) break; AMGraph G; CreateUDN(G,n,m); //创建无向网G int v; cin>>v; ShortPathMAX(G,v); //最长的最短路径的求解 } return 0; }

// 定义超声波传感器的引脚const int trigPin = 2;const int echoPin = 3;// 定义LED的引脚const int ledPin = 9;// 定义距离范围const int minDist = 2;const int maxDist = 400;void setup() { // 初始化串口和LED Serial.begin(9600); pinMode(ledPin, OUTPUT);}void loop() { // 发送超声波信号 digitalWrite(trigPin, LOW); delayMicroseconds(2); digitalWrite(trigPin, HIGH); delayMicroseconds(10); digitalWrite(trigPin, LOW); // 接收超声波信号并计算距离 long duration = pulseIn(echoPin, HIGH); int distance = duration / 58; // 控制LED亮度 if (distance >= minDist && distance <= maxDist) { int brightness = map(distance, minDist, maxDist, 255, 0); analogWrite(ledPin, brightness); } else { analogWrite(ledPin, 0); } // 输出距离和LED亮度 Serial.print("Distance: "); Serial.print(distance); Serial.print(" cm, Brightness: "); Serial.println(analogRead(ledPin)); // 等待一段时间 delay(100);}在这代码中添加一个舵机并且在15度到165度之间循环转动,再加上两个LED是他们能实现在15到65度和65到165度之间分别在2到400cm之间亮度不一样

要实现这个功能,我们需要在原来的代码中添加一个舵机和两个LED,并根据舵机的角度和距离控制LED的亮度。下面是修改后的代码实现: ```arduino // 定义超声波传感器的引脚 const int trigPin = 2; const int echoPin = 3; // 定义LED的引脚 const int ledPin1 = 9; const int ledPin2 = 10; // 定义舵机的引脚和角度范围 const int servoPin = 5; const int minAngle = 15; const int maxAngle = 165; // 定义距离范围 const int minDist = 2; const int maxDist = 400; void setup() { // 初始化串口、LED和舵机 Serial.begin(9600); pinMode(ledPin1, OUTPUT); pinMode(ledPin2, OUTPUT); pinMode(servoPin, OUTPUT); } void loop() { // 循环转动舵机 for (int angle = minAngle; angle <= maxAngle; angle++) { // 设置舵机角度 int pulseWidth = map(angle, 0, 180, 544, 2400); digitalWrite(servoPin, HIGH); delayMicroseconds(pulseWidth); digitalWrite(servoPin, LOW); delay(20); // 发送超声波信号 digitalWrite(trigPin, LOW); delayMicroseconds(2); digitalWrite(trigPin, HIGH); delayMicroseconds(10); digitalWrite(trigPin, LOW); // 接收超声波信号并计算距离 long duration = pulseIn(echoPin, HIGH); int distance = duration / 58; // 控制LED亮度 if (angle >= minAngle && angle <= 65) { if (distance >= minDist && distance <= maxDist) { int brightness = map(distance, minDist, maxDist, 255, 0); analogWrite(ledPin1, brightness); } else { analogWrite(ledPin1, 0); } } else if (angle > 65 && angle <= maxAngle) { if (distance >= minDist && distance <= maxDist) { int brightness = map(distance, minDist, maxDist, 255, 0); analogWrite(ledPin2, brightness); } else { analogWrite(ledPin2, 0); } } // 输出距离和LED亮度 Serial.print("Angle: "); Serial.print(angle); Serial.print(", Distance: "); Serial.print(distance); Serial.print(" cm, Brightness1: "); Serial.print(analogRead(ledPin1)); Serial.print(", Brightness2: "); Serial.println(analogRead(ledPin2)); // 等待一段时间 delay(50); } } ``` 这个程序中,我们添加了一个舵机和两个LED,并在for循环中循环转动舵机。在每个角度下,我们发送超声波信号并计算距离,根据舵机的角度和距离控制LED的亮度。当舵机在15到65度之间时,我们控制ledPin1的亮度,当舵机在65到165度之间时,我们控制ledPin2的亮度。如果距离小于2厘米或大于4米,LED会完全关闭。程序还会通过串口输出角度、距离和LED亮度的值,方便调试和观察。

相关推荐

最新推荐

recommend-type

NexusSetup.exe是Nexus设备设置程序的执行文件

这款Windows Dock栏工具解决了窗口遮挡问题,支持将窗口最小化至Dock栏,相比mydock稳定性更好,而相比bitdock体积更小,是一款适中的优秀选择,值得推荐。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到
recommend-type

BSC关键绩效指标详解:财务与运营效率评估

BSC(Balanced Scorecard,平衡计分卡)是一种企业绩效管理系统,它将公司的战略目标分解为四个维度:财务、客户、内部流程和学习与成长。在这个文档中,我们看到的是针对特定行业(可能是保险或保险经纪)的BSC绩效考核指标汇总,专注于财务类和非财务类的关键绩效指标(KPIs)。 财务类指标: 1. 部门费用预算达成率:衡量实际支出与计划费用之间的对比,通过公式 (实际部门费用/计划费用)*100% 来计算,数据来源于部门的预算和实际支出记录。 2. 项目研究开发费用预算达成率:同样用于评估研发项目的资金管理,公式为 (实际项目研究开发费用/计划费用)*100%。 3. 课题费用预算达成率、招聘费用预算达成率、培训费用预算达成率 和 新产品研究开发费用预算达成率:这些都是人力资源相关开支的预算执行情况,涉及到费用的实际花费与计划金额的比例。 4. 承保利润:衡量保险公司盈利能力的重要指标,包括赔付率和寿险各险种的死差损益(实际死亡率与预期死亡率的差异)。 5. 赔付率:反映保险公司的赔付情况,是业务健康度的一个关键指标。 6. 内嵌价值的增加:代表了保单的价值增长,反映了公司长期盈利能力。 7. 人力成本总额控制率:通过比较实际人力成本与计划成本来评估人力成本的有效管理。 8. 标准保费达成率:衡量公司的销售业绩,即实际收取保费与目标保费的比率。 9. 其他费用比率,如附加佣金、续期推动费用、业务推动费用等,用来评估营销费用的效率。 非财务类指标: 1. 销售目标达成率:衡量销售团队完成预定目标的程度,通过实际销售额与计划销售额的比率计算。 2. 理赔率:体现客户服务质量和效率,涉及保险公司处理理赔请求的速度和成功率。 3. 产品/服务销售收入达成率:衡量产品或服务的实际销售效果,反映市场响应和客户满意度。 这些指标集合在一起,提供了全面的视角来评估公司的经营效率、财务表现以及战略执行情况。通过定期跟踪和分析这些数据,企业可以持续优化策略,提升业绩,确保与整体战略目标的一致性。每个指标的数据来源通常来自于相关部门的预算和实际操作记录,确保信息的准确性。