写一个多机多卡训练GPT的代码
时间: 2023-01-31 17:05:06 浏览: 166
这是一个使用 PyTorch 实现 GPT 的多机多卡训练的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
# 定义 GPT 模型
class GPT(nn.Module):
def __init__(self, vocab_size, hidden_size, num_layers):
super(GPT, self).__init__()
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size=vocab_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True)
self.linear = nn.Linear(hidden_size, vocab_size)
def forward(self, x, hidden=None):
out, hidden = self.lstm(x, hidden)
out = self.linear(out)
return out, hidden
# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 将模型放到设备上
model = GPT(vocab_size, hidden_size, num_layers).to(device)
# 分布式训练
model = nn.DataParallel(model)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 训练循环
for epoch in range(num_epochs):
# 准备输入和目标
inputs = torch.randint(0, vocab_size, (batch_size, sequence_length)).to(device)
targets = torch.randint(0, vocab_size, (batch_size, sequence_length)).to(device)
# 前向计算
output, _ = model(inputs)
# 计算损失
loss = criterion(output.view(-1, vocab_size), targets.view(-1))
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
在这段代码中,我们首先定义了 GPT 模型的类,然后将模型放到设备上,并使用 `nn.DataParallel` 将
阅读全文