用Pytorch写SDNE代码。
时间: 2023-02-05 14:15:34 浏览: 117
SDNE(Structure Preserving Deep Network Embedding)是一种深度学习方法,用于将网络中的节点嵌入到低维空间中。这种方法能够保留网络的结构信息,并且能够通过调整模型参数来调整嵌入的质量。
以下是用 PyTorch 实现 SDNE 的简单代码示例:
```python
import torch
import torch.nn as nn
class SDNE(nn.Module):
def __init__(self, num_nodes, embedding_dim):
super(SDNE, self).__init__()
self.num_nodes = num_nodes
self.embedding_dim = embedding_dim
self.encoder = nn.Sequential(
nn.Linear(num_nodes, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, embedding_dim)
)
self.decoder = nn.Sequential(
nn.Linear(embedding_dim, 64),
nn.ReLU(),
nn.Linear(64, 128),
nn.ReLU(),
nn.Linear(128, num_nodes)
)
def forward(self, adjacency_matrix):
embeddings = self.encoder(adjacency_matrix)
reconstructed_adjacency_matrix = self.decoder(embeddings)
return embeddings, reconstructed_adjacency_matrix
# Create model
model = SDNE(num_nodes=1000, embedding_dim=32)
# Adjacency matrix with shape (batch_size, num_nodes, num_nodes)
adjacency_matrix = torch.randn(10, 1000, 1000)
# Calculate embeddings and reconstructed adjacency matrix
embeddings, reconstructed_adjacency_matrix = model(adjacency_matrix)
# Shape of embeddings: (batch_size, num_nodes, embedding_dim)
# Shape of reconstructed_adjacency_matrix: (batch_size, num_nodes, num_nodes)
```
上面的代码定义了一个简单的 SDNE 模型,其中包含编码器和解码器两个部分。编码器接收邻接矩阵作为输入
阅读全文