使用基于LSTM模型的pyTorch实现滚动预测函数代码
时间: 2024-02-22 22:58:02 浏览: 108
好的,以下是一个基于LSTM模型的pyTorch实现的滚动预测函数代码示例:
```python
import torch
import torch.nn as nn
class LSTM(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(LSTM, self).__init__()
self.hidden_dim = hidden_dim
self.lstm = nn.LSTM(input_dim, hidden_dim)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, inputs):
lstm_out, _ = self.lstm(inputs.view(len(inputs), 1, -1))
predictions = self.fc(lstm_out.view(len(inputs), -1))
return predictions[-1]
def rolling_prediction(data, window_size, input_dim, output_dim, hidden_dim, num_layers, num_epochs, learning_rate):
model = LSTM(input_dim, hidden_dim, output_dim)
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for i in range(num_epochs):
for j in range(len(data)-window_size):
optimizer.zero_grad()
model.hidden = (torch.zeros(num_layers, 1, model.hidden_dim), torch.zeros(num_layers, 1, model.hidden_dim))
inputs = torch.tensor(data[j:j+window_size, :-output_dim], dtype=torch.float32)
target = torch.tensor(data[j+window_size-1, -output_dim:], dtype=torch.float32)
output = model(inputs)
loss = loss_function(output, target)
loss.backward()
optimizer.step()
predictions = []
for j in range(len(data) - window_size):
model.hidden = (torch.zeros(num_layers, 1, model.hidden_dim), torch.zeros(num_layers, 1, model.hidden_dim))
inputs = torch.tensor(data[j:j+window_size, :-output_dim], dtype=torch.float32)
output = model(inputs).detach().numpy()
predictions.append(output)
return predictions
```
该函数的输入参数包括:数据集 `data`,滑动窗口大小 `window_size`,输入维度 `input_dim`,输出维度 `output_dim`,隐藏层维度 `hidden_dim`,LSTM层数 `num_layers`,训练轮数 `num_epochs`,学习率 `learning_rate`。
该函数的输出是一个预测结果列表 `predictions`,其中每个元素是一个预测值的向量。
阅读全文