loss = criterion(output[train_mask].float(), drug_graph_label[train_mask].float())
时间: 2023-12-06 21:42:42 浏览: 75
这段代码是用来计算模型的损失函数的。其中,output是模型的输出,train_mask是训练集的掩码,drug_graph_label是药物图的标签。criterion是损失函数,一般使用交叉熵损失函数或均方误差损失函数等。损失函数的作用是衡量模型预测结果与真实标签之间的差距,通过最小化损失函数来优化模型。在这个例子中,使用了交叉熵损失函数,将模型的输出和药物图的标签都转化成float类型进行计算。
相关问题
model = HetGraphSAGE(nfeat1=drug_feat_dim, nfeat2=protein_feat_dim, nhid=hidden_size, out_dim=drug_node, gamma=gamma) criterion = nn.MSELoss() # MSE损失函数 optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=0.0001) # 优化器 drug_graph = (torch.ones_like(drug_graph.to_dense())).to_sparse() data = (drug_feat.float(), protein_feat.float(), drug_graph.float(), drug_protein_graph.float()) for epoch in range(epochs): model.train() # 模型在train模式 optimizer.zero_grad() # zero_grad 清除上一次的一些梯度 output = model(data) # forward loss = criterion(output[train_mask].float(), drug_graph_label[train_mask].float()) # 只计算Train节点的损失 # 测试模型准确率 accuracy = (torch.abs(output[test_mask].float() - drug_graph_label[test_mask].float()) < eps).sum() / (drug_graph_label[test_mask].shape[0]) r2_score = stats.linregress(output[test_mask].tolist(), drug_graph_label[test_mask].tolist()).rvalue ** 2 print("Epoch [{}/{}], train loss: {:.4f}, test accuracy: {:.4f}, r2_score: {:.4f}".format(epoch + 1, epochs, loss.item(), accuracy,r2_score)) loss.backward() optimizer.step() # test阶段 model.eval() # 不进行梯度优化 output = model(data) 把它改成用optuna调参,在valid_mask上调参,在test_mask上检验结果
好的,你可以使用 Optuna 进行参数调优。具体来说,你可以将 train_mask 划分为 train_mask 和 valid_mask,然后在 valid_mask 上进行调参,最后使用 test_mask 进行结果的检验。
首先,你需要安装 optuna:
```
pip install optuna
```
接下来,你需要定义一个函数,该函数将会被 Optuna 优化器调用,该函数的输入为 Optuna 的 Trial 对象,输出为一个 float 类型的值,表示该模型的性能。
```python
import optuna
def objective(trial):
hidden_size = trial.suggest_int('hidden_size', 32, 128)
gamma = trial.suggest_float('gamma', 0.1, 1.0)
lr = trial.suggest_float('lr', 1e-5, 1e-3, log=True)
weight_decay = trial.suggest_float('weight_decay', 1e-6, 1e-3, log=True)
model = HetGraphSAGE(nfeat1=drug_feat_dim, nfeat2=protein_feat_dim, nhid=hidden_size, out_dim=drug_node, gamma=gamma)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
drug_graph = (torch.ones_like(drug_graph.to_dense())).to_sparse()
data = (drug_feat.float(), protein_feat.float(), drug_graph.float(), drug_protein_graph.float())
for epoch in range(epochs):
model.train()
optimizer.zero_grad()
output = model(data)
loss = criterion(output[train_mask].float(), drug_graph_label[train_mask].float())
# 只计算Train节点的损失
accuracy = (torch.abs(output[valid_mask].float() - drug_graph_label[valid_mask].float()) < eps).sum() / (drug_graph_label[valid_mask].shape[0])
loss.backward()
optimizer.step()
model.eval()
output = model(data)
# 在 test_mask 上计算 r2_score
r2_score = stats.linregress(output[test_mask].tolist(), drug_graph_label[test_mask].tolist()).rvalue ** 2
return r2_score
```
在定义好 objective 函数之后,你需要使用 Optuna 的 study 对象进行优化。这里我使用 TPE 算法进行优化。
```python
study = optuna.create_study(direction='maximize')
study.optimize(objective, n_trials=100)
```
最后,你可以打印出最佳参数和对应的 r2_score。
```python
print('Best trial:')
trial = study.best_trial
print(' Value: {:.4f}'.format(trial.value))
print(' Params: ')
for key, value in trial.params.items():
print(' {}: {}'.format(key, value))
```
注意,由于你需要将 train_mask 划分为 train_mask 和 valid_mask,因此训练集的大小会相应减小。因此,你需要考虑增加 epochs 的数量来保证模型的性能。
def train(model, train_loader, criterion, optimizer): model.train() train_loss = 0.0 train_acc = 0.0 for i, (inputs, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(inputs.unsqueeze(1).float()) loss = criterion(outputs, labels.long()) loss.backward() optimizer.step() train_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) train_loss = train_loss / len(train_loader.dataset) train_acc = train_acc.double() / len(train_loader.dataset) return train_loss, train_acc def test(model, verify_loader, criterion): model.eval() test_loss = 0.0 test_acc = 0.0 with torch.no_grad(): for i, (inputs, labels) in enumerate(test_loader): outputs = model(inputs.unsqueeze(1).float()) loss = criterion(outputs, labels.long()) test_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) test_acc += torch.sum(preds == labels.data) test_loss = test_loss / len(test_loader.dataset) test_acc = test_acc.double() / len(test_loader.dataset) return test_loss, test_acc # Instantiate the model model = CNN() # Define the loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # Instantiate the data loaders train_dataset = MyDataset1('1MATRICE') train_loader = DataLoader(train_dataset, batch_size=5, shuffle=True) test_dataset = MyDataset2('2MATRICE') test_loader = DataLoader(test_dataset, batch_size=5, shuffle=False) train_losses, train_accs, test_losses, test_accs = [], [], [], [] for epoch in range(500): train_loss, train_acc = train(model, train_loader, criterion, optimizer) test_loss, test_acc = test(model, test_loader, criterion) train_losses.append(train_loss) train_accs.append(train_acc) test_losses.append(test_loss) test_accs.append(test_acc) print('Epoch: {} Train Loss: {:.4f} Train Acc: {:.4f} Test Loss: {:.4f} Test Acc: {:.4f}'.format( epoch, train_loss, train_acc, test_loss, test_acc))
这是一个基于PyTorch框架的CNN模型的训练过程。代码中定义了两个函数:train和test,分别用于训练模型和测试模型。
在训练过程中,首先将模型设置为训练模式,然后遍历训练数据集,对每个batch的数据进行前向传播、反向传播和优化器更新。在每个batch的训练结束后,计算该batch的损失和精度,并将其累加到总的训练损失和训练精度中。
在测试过程中,首先将模型设置为评估模式,然后遍历测试数据集,对每个batch的数据进行前向传播和损失计算。在每个batch的测试结束后,计算该batch的损失和精度,并将其累加到总的测试损失和测试精度中。
最后,将训练过程中的损失和精度以及测试过程中的损失和精度保存到相应的列表中,并打印出当前epoch的训练损失、训练精度、测试损失和测试精度。
整个训练过程会重复执行500个epoch,每个epoch都是一个完整的训练和测试过程。
阅读全文