function seq = GenChaos(init,rv_bit,len) % init: 设定初始值 % thd : 门限 % len : 生成序列长度 % rv_bit: 舍弃的位数 x = init; % 初始值 thd = 0; % 门限 S=rv_bit; % 舍弃的位数 T=len; % 截断的位数 H=zeros(1,T); % 码序列 for i=1:S %舍去前S位 x=1-2*x*x; end for i=1:T %从S+1为开始截断,截断T位 if x>thd H(i)=1; else H(i)=0; end x=1-2*x*x; end seq = H; end这个程序运行的流程
时间: 2024-01-01 15:06:22 浏览: 128
这个程序是用来生成伪随机码的 MATLAB 函数,其主要流程如下:
1. 初始化参数:包括初始值、门限、舍弃的位数和生成序列长度;
2. 进行迭代,得到伪随机序列;
3. 对伪随机序列进行截断,得到最终的伪随机码。
具体而言,下面是 GenChaos 函数的 MATLAB 代码:
```matlab
function seq = GenChaos(init, rv_bit, len)
% 参数初始化
x = init; % 初始值
thd = 0; % 门限
S = rv_bit; % 舍弃的位数
T = len; % 截断的位数
% 生成伪随机序列
for i = 1:S
x = 1 - 2 * x * x;
end
H = zeros(1, T);
for i = 1:T
if x > thd
H(i) = 1;
else
H(i) = 0;
end
x = 1 - 2 * x * x;
end
% 截断伪随机序列,得到伪随机码
seq = H;
end
```
用户可以通过调整函数输入参数 `init`、`rv_bit` 和 `len`,来改变初始值、舍弃的位数和生成序列长度。需要注意的是,在生成伪随机序列时,需要进行一定次数的迭代,以消除初始值对结果的影响。在截断伪随机序列时,可以通过调整门限 `thd` 的值,来控制伪随机码的分布。
相关问题
def PrepareDataset(speed_matrix, BATCH_SIZE = 40, seq_len = 10, pred_len = 1, train_propotion = 0.7, valid_propotion = 0.2):
"""
Function to prepare dataset for training and validation
Args:
speed_matrix: numpy array of shape (num_days, num_timesteps, num_nodes)
BATCH_SIZE: batch size for training (default = 40)
seq_len: sequence length (number of timesteps) for input (default = 10)
pred_len: number of timesteps to predict (default = 1)
train_propotion: proportion of dataset to use for training (default = 0.7)
valid_propotion: proportion of dataset to use for validation (default = 0.2)
Returns:
train_data: PyTorch DataLoader object for training data
valid_data: PyTorch DataLoader object for validation data
"""
# Calculate number of days
num_days = speed_matrix.shape[0]
# Calculate number of nodes
num_nodes = speed_matrix.shape[2]
# Calculate total number of timesteps
total_timesteps = num_days * speed_matrix.shape[1]
# Create input and target sequences
input_seq = []
target_seq = []
# Loop through each day
for day in range(num_days):
# Loop through each timestep
for timestep in range(speed_matrix.shape[1] - seq_len - pred_len):
# Extract input sequence
input_seq.append(speed_matrix[day, timestep:timestep+seq_len, :])
# Extract target sequence
target_seq.append(speed_matrix[day, timestep+seq_len:timestep+seq_len+pred_len, :])
# Convert input and target sequences to numpy arrays
input_seq = np.array(input_seq)
target_seq = np.array(target_seq)
# Split dataset into training, validation, and testing sets
train_size = int(total_timesteps * train_propotion)
valid_size = int(total_timesteps * valid_propotion)
test_size = total_timesteps - train_size - valid_size
train_input = input_seq[:train_size]
train_target = target_seq[:train_size]
valid_input = input_seq[train_size:train_size+valid_size]
valid_target = target_seq[train_size:train_size+valid_size]
test_input = input_seq[train_size+valid_size:]
test_target = target_seq[train_size+valid_size:]
# Convert training and validation data to PyTorch DataLoader objects
train_data = DataLoader(TensorDataset(torch.Tensor(train_input), torch.Tensor(train_target)), batch_size=BATCH_SIZE, shuffle=True)
valid_data = DataLoader(TensorDataset(torch.Tensor(valid_input), torch.Tensor(valid_target)), batch_size=BATCH_SIZE, shuffle=True)
return train_data, valid_data
解释下面这段代码 def pad_sequence(seq_feature, batch_first=True, padding_value=0, max_len=966): """对长度不同于模型输入的音频进行padding或截断""" feature_shape = seq_feature.shape feat_len = feature_shape[0] if feat_len > max_len: # truncate to max length seq_feature = seq_feature[:max_len].unsqueeze(0) return seq_feature batch_size = 1 trailing_dims = feature_shape[1:] if batch_first: out_dims = (batch_size, max_len) + trailing_dims else: out_dims = (max_len, batch_size) + trailing_dims out_tensor = seq_feature.data.new(*out_dims).fill_(padding_value) if batch_first: out_tensor[0, :feat_len, ...] = seq_feature else: out_tensor[:feat_len, 0, ...] = seq_feature return out_tensor
这段代码是用于对长度不同于模型输入的音频进行padding或截断的。具体来说,它的输入是一个形状为(seq_len, feature_dim)的特征序列,其中seq_len表示该特征序列的长度,feature_dim表示每个特征向量的维度。该函数首先获取输入序列的长度feat_len,如果feat_len大于max_len,就将输入序列截断到max_len的长度。如果feat_len小于等于max_len,就对输入序列进行padding,使其长度等于max_len。padding使用的值为padding_value。
输出为形状为(batch_size, max_len, feature_dim)的张量,其中batch_size表示批大小,如果batch_first为True,则batch_size为1,特征序列在第二个维度上,即张量的形状为(batch_size, seq_len, feature_dim),否则特征序列在第一个维度上,即张量的形状为(seq_len, batch_size, feature_dim)。输出张量中,长度小于等于原始特征序列长度feat_len的部分是原始特征序列,其余部分都是padding_value。
阅读全文