pytorch实现猫狗识别 python代码
时间: 2023-10-01 19:10:19 浏览: 146
很好,下面是一份简单的 PyTorch 代码实现猫狗识别:
```
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
# 定义神经网络
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 2)
def forward(self, x):
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 加载数据集
transform = transforms.Compose([transforms.RandomResizedCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
trainset = torchvision.datasets.ImageFolder("train", transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
# 定义优化器和损失函数
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练神经网络
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print("[{}, {}] loss: {:.3f}".format(epoch+1, i+1,
running_loss/2000))
running_loss = 0.0
print("Finished Training")
```
请注意,此代码仅供参考,您可能需要针对自己的具体需求进行修改。
阅读全文