python非线性回归
时间: 2023-10-17 11:35:03 浏览: 210
在Python中进行非线性回归,可以使用Scikit-learn库中的PolynomialFeatures和LinearRegression方法。首先,我们需要导入必要的库和模块,并生成我们要拟合的数据。然后,我们使用PolynomialFeatures将输入特征转换为多项式特征。接下来,我们使用LinearRegression拟合转换后的特征和目标值。最后,我们可以使用训练好的模型进行预测并绘制非线性回归曲线。
以下是一个实现非线性回归的示例代码:
```python
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
# 生成数据
x = np.array(range(30))
temp_y = 10 * x + 2 * x**2 + x**3
y = temp_y + 1500 * np.random.normal(size=30)
# 转换为多项式特征
polyfeat = PolynomialFeatures(degree=3)
x_p = polyfeat.fit_transform(x.reshape(-1, 1))
# 拟合模型
clf = LinearRegression()
clf.fit(x_p, y)
# 预测值
y_pred = clf.predict(x_p)
# 绘制非线性回归曲线
plt.scatter(x, y, label="Real value")
plt.plot(x, y_pred, label="Non-linear regression")
plt.xlabel("x")
plt.ylabel("y")
plt.legend()
plt.show()
```
运行以上代码,你将得到一个非线性回归曲线。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [python sklearn 实现线性回归与非线性回归](https://blog.csdn.net/weixin_49583390/article/details/120573540)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *3* [python的几种非线性回归](https://blog.csdn.net/Cappucccccino/article/details/121331416)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文