matlab的牛顿迭代法解非线性方程组
时间: 2023-12-06 16:37:31 浏览: 103
牛顿迭代法解非线性方程组
5星 · 资源好评率100%
牛顿迭代法是一种求解非线性方程组的方法,MATLAB可以通过编写代码实现牛顿迭代法求解非线性方程组。以下是MATLAB实现牛顿迭代法求解非线性方程组的步骤:
1.定义非线性方程组,例如:
```matlab
function F = myfun(x)
F = [x(1)^2 + x(2)^2 - 1; x(1) - x(2)^3];
```
2.定义牛顿迭代法的迭代公式,例如:
```matlab
function [x, k] = newton(x0, tol, maxiter)
k = 0;
x = x0;
F = myfun(x);
while norm(F) > tol && k < maxiter
J = [2*x(1), 2*x(2); 1, -3*x(2)^2];
delta_x = -J\F;
x = x + delta_x;
F = myfun(x);
k = k + 1;
end
```
3.调用函数进行求解,例如:
```matlab
x0 = [1; 1];
tol = 1e-6;
maxiter = 100;
[x, k] = newton(x0, tol, maxiter);
disp(['Solution: x = [', num2str(x(1)), ', ', num2str(x(2)), ']']);
disp(['Number of iterations: ', num2str(k)]);
```
以上代码中,x0是初始点,tol是容差,maxiter是最大迭代次数,x是求解得到的解,k是迭代次数。
阅读全文