transformer编码器是什么
时间: 2024-04-05 13:28:36 浏览: 64
transformer代码
5星 · 资源好评率100%
Transformer编码器是一种用于自然语言处理任务的神经网络模型。它是由Google在2017年提出的,被广泛应用于机器翻译、文本摘要、问答系统等任务中。
Transformer编码器的核心是自注意力机制(self-attention),它能够在输入序列中建立全局的依赖关系。相比于传统的循环神经网络(RNN)或卷积神经网络(CNN),Transformer能够并行计算,加快了训练速度。
Transformer编码器由多个相同的层堆叠而成,每个层包含两个子层:多头自注意力机制和前馈神经网络。多头自注意力机制能够学习到输入序列中不同位置之间的依赖关系,而前馈神经网络则对每个位置的特征进行非线性变换。
通过堆叠多个编码器层,Transformer能够逐渐提取输入序列中的语义信息,并生成一个高维表示向量。这个向量可以用于后续的任务,如机器翻译中的解码或问答系统中的答案生成。
阅读全文