transformer编码器代码
时间: 2023-08-29 18:05:24 浏览: 92
以下是一个简单的 Transformer 编码器的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class TransformerEncoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1):
super(TransformerEncoderLayer, self).__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, src, src_mask=None):
src2 = self.self_attn(src, src, src, attn_mask=src_mask)[0]
src = src + self.dropout(src2)
src = self.norm1(src)
src2 = self.linear2(F.relu(self.linear1(src)))
src = src + self.dropout(src2)
src = self.norm2(src)
return src
class TransformerEncoder(nn.Module):
def __init__(self, encoder_layer, num_layers):
super(TransformerEncoder, self).__init__()
self.layers = nn.ModuleList([encoder_layer for _ in range(num_layers)])
def forward(self, src, mask=None):
output = src
for layer in self.layers:
output = layer(output, mask)
return output
# 使用示例
d_model = 512 # 模型维度
nhead = 8 # 多头注意力的头数
dim_feedforward = 2048 # 前馈网络隐藏层维度
dropout = 0.1 # 丢弃率
num_layers = 6 # 编码器层数
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout)
transformer_encoder = TransformerEncoder(encoder_layer, num_layers)
src = torch.randn(10, 32, d_model) # 输入数据,形状为 (sequence_length, batch_size, d_model)
output = transformer_encoder(src)
```
这是一个简化的实现,仅包含 Transformer 编码器的前向传播。你可以根据自己的需要进行修改和扩展。
阅读全文