编写pytorch代码,要求定义LSTMAttention模型,定义FA-CPSO优化算法,初始化粒子群,初始化最优解和粒子适应度、设置混沌常数和萤火虫扰动常数、初始化萤火虫位置和亮度、计算初始全局最优参数、计算萤火虫的初始亮度、开始迭代、更新亮度、更新每个粒子的适应度位置和速度、计算每个粒子的适应度、更新全局最优参数,优化LSTMAttention模型的权重参数,将最佳参数加载到模型中,读取训练集trainset中的数据进行训练
时间: 2024-04-03 19:35:14 浏览: 99
好的,这是一个比较复杂的任务,我将为你提供一些代码框架和思路,你可以根据实际情况进行修改和完善。
首先,你需要定义LSTMAttention模型。这里以一个简单的模型为例:
```python
class LSTMAttention(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(LSTMAttention, self).__init__()
self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True)
self.attention = nn.Linear(hidden_dim, 1)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
lstm_out, _ = self.lstm(x)
attention_scores = self.attention(lstm_out)
attention_weights = torch.softmax(attention_scores, dim=1)
context_vector = torch.sum(attention_weights * lstm_out, dim=1)
output = self.fc(context_vector)
return output
```
接下来,你需要定义FA-CPSO优化算法。这里以一个比较简单的实现为例:
```python
class FACPSO():
def __init__(self, n_particles, n_dim, n_iter):
self.n_particles = n_particles
self.n_dim = n_dim
self.n_iter = n_iter
self.w = 0.729
self.c1 = 1.49445
self.c2 = 1.49445
self.x = torch.randn(n_particles, n_dim)
self.v = torch.randn(n_particles, n_dim)
self.pbest_x = self.x.clone()
self.pbest_fitness = torch.zeros(n_particles)
self.gbest_x = torch.randn(n_dim)
self.gbest_fitness = float('inf')
def optimize(self, fitness_func):
for i in range(self.n_iter):
r1 = torch.rand(self.n_particles, self.n_dim)
r2 = torch.rand(self.n_particles, self.n_dim)
v_new = self.w * self.v + self.c1 * r1 * (self.pbest_x - self.x) + self.c2 * r2 * (self.gbest_x - self.x)
x_new = self.x + v_new
fitness_new = fitness_func(x_new)
update = fitness_new < self.pbest_fitness
self.pbest_x[update] = x_new[update]
self.pbest_fitness[update] = fitness_new[update]
update = self.pbest_fitness.min
阅读全文
相关推荐

















