把r = np.array([0, 10])第一个数据拿出来代码
时间: 2024-02-13 11:06:24 浏览: 17
代码如下:
```python
import numpy as np
r = np.array([0, 10])
first_data = r[0]
print(first_data) # 输出 0
```
其中,`r[0]`表示取出r数组的第一个元素,即0。
相关问题
import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=["SimHei"] #单使用会使负号显示错误 plt.rcParams['axes.unicode_minus']=False #把负号正常显示 # 读取北京房价数据 path='data.txt' data=pd.read_csv(path,header=None,names=['mianji','jiage']) # data.head() # data.describe() # 绘制散点图 data.plot(kind='scatter',x='mianji',y='jiage') plt.show() def computeCost(X,y,theta): inner=np.power((X*theta.T),2) return np.sum(inner)/(2*len(X)) data.insert(0,'Ones',1) clos=data.shape[1] X=data.iloc[:,0:clos-1] y=data.iloc[:,clos-1:clos] X=np.array(X.values) y=np.array(y.values) theta=np.array[0,0] computeCost(X,y,theta) def gradientDescent(X,y,theta,alpha,iters): temp=np.array(np.zeros(theta.shape)) parameters=int(theta.ravel().shape[1]) cost=np.zeros(iters) for i in range(iters): error=(X*theta.T)-y for j in range(parameters): term=np.multiply(error,X[:,j]) temp[0,j]=theta[0,j]-((alpha/len(X))*np.sum(term)) theta=temp cost[i]=computeCost(X,y,theta) return theta,cost alpha=0.01 iters=1000 g,cost=gradientDescent(X,y,theta,alpha,iters) x=np.linspace(data.mianji.min(),data.mianji.max(),100) f=g[0,0]+(g[0,1]*x) fig,ax=plt.subplots(figsize=(12,8)) ax.plot(x,f,'r',label='北京房价') ax.scatter(data.mianji,data.jiage,label='Traning data') ax.legend(loc=4) ax.set_xlabel('房子面积') ax.set_ylabel('房子价格') ax.set_title("北京房价格回归图") plt.show()
在这段代码中,有几个错误:
1. 第一行和第二行之间应该有一个空行。
2. 导入numpy和pandas模块时,应该使用import语句,每个模块之间应该有一个空行。
3. 在第10行和11行中,应该将plt.rcParams的设置放在import语句之后。
4. 在第14行中,应该将data.insert(0,'Ones',1)改为data.insert(0,'Ones',np.ones(len(data))),以便将1插入到整个列中。
5. 在第16行中,应该将clos改为cols,因为该变量代表“列数”。
6. 在第18行中,应该将theta=np.array[0,0]改为theta=np.array([0,0]),以便创建一个2个元素的数组。
7. 在第25行和26行之间应该有一个空行。
8. 在第27行中,应该将parameters=int(theta.ravel().shape[0])改为parameters=int(theta.ravel().shape[1]),因为该数组是一个2x1的数组。
9. 在第36行中,应该将g,cost=gradientDescent(X,y,theta,alpha,iters)改为g,cost=gradientDescent(X,y,theta,alpha,int(iters)),以确保iters是一个整数。
10. 在第38行和39行之间应该有一个空行。
以下是修正后的代码:
```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ["SimHei"] # 单使用会使负号显示错误
plt.rcParams['axes.unicode_minus'] = False # 把负号正常显示
# 读取北京房价数据
path = 'data.txt'
data = pd.read_csv(path, header=None, names=['mianji', 'jiage'])
# data.head()
# data.describe()
# 绘制散点图
data.plot(kind='scatter', x='mianji', y='jiage')
plt.show()
def computeCost(X, y, theta):
inner = np.power((X * theta.T - y), 2)
return np.sum(inner) / (2 * len(X))
data.insert(0, 'Ones', np.ones(len(data))) # 将1插入到整个列中
cols = data.shape[1]
X = data.iloc[:, 0:cols-1]
y = data.iloc[:, cols-1:cols]
X = np.array(X.values)
y = np.array(y.values)
theta = np.array([0, 0]) # 创建一个2个元素的数组
computeCost(X, y, theta)
def gradientDescent(X, y, theta, alpha, iters):
temp = np.array(np.zeros(theta.shape))
parameters = int(theta.ravel().shape[1])
cost = np.zeros(iters)
for i in range(iters):
error = (X * theta.T) - y
for j in range(parameters):
term = np.multiply(error, X[:, j])
temp[0, j] = theta[0, j] - ((alpha / len(X)) * np.sum(term))
theta = temp
cost[i] = computeCost(X, y, theta)
return theta, cost
alpha = 0.01
iters = 1000
g, cost = gradientDescent(X, y, theta, alpha, int(iters)) # 确保iters是一个整数
x = np.linspace(data.mianji.min(), data.mianji.max(), 100)
f = g[0, 0] + (g[0, 1] * x)
fig, ax = plt.subplots(figsize=(12, 8))
ax.plot(x, f, 'r', label='北京房价')
ax.scatter(data.mianji, data.jiage, label='Traning data')
ax.legend(loc=4)
ax.set_xlabel('房子面积')
ax.set_ylabel('房子价格')
ax.set_title("北京房价格回归图")
plt.show()
```
import pandas as pd import os from scipy import integrate, signal import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文 matplotlib.rcParams['axes.unicode_minus'] = False # 用来正常显示正负号 #y = pd.read_excel(r'C:\Users\ppddcsm\Desktop\第一批数据拆分\第一批1号1振\A1-1-600.xlsx', usecols=[1],index_col=False, header=None ,skiprows=[0]) folder_path = r'C:\Users\ppddcsm\Desktop\第二批数据拆分\第二批1号1振' file_names = os.listdir(folder_path) for file_name in file_names: file_path = os.path.join(folder_path, file_name) y = pd.read_excel(file_path) N = len(y) fs = 1280 dt = 1/fs #t_axis = [i * dt for i in range(len(y))] # 时间轴 t_axis = [i * dt for i in range(len(y))] y1 = y.swapaxes(0, 1) # 矩阵转置 data = y1.fillna(-1).values #获取数据,将缺失值标记设置为-1,并转换为NumPy数组对象 t = data.flatten() # 展平数组 a = np.array(t) # 梯形法 cumtrapz累计计算积分,cumtrapz(y, x=None, dx=1.0, axis=-1, initial=None)。y: 需要被积分的数值序列;x: y中元素的间距,积分变量,若为空,则y元素的间距默认为dx; # 续:dx: 如果x为空,y中元素的间距由dx给出;axis: 确定积分轴;initial: 如果提供,则用该值作为返回值的第一个数值。 #y_int = integrate.cumtrapz(np.array(a), x=None, dx=0.00078125, initial=0)*1000 # m到mm转换要乘1000 #y_int = np.multiply(integrate.cumtrapz(np.array(a), x=None, dx=0.00078125, initial=0), 1000) Y = integrate.cumtrapz(np.array(a), x=None, dx=0.00078125, initial=0) y_int = np.multiply(Y, 1000)
这段代码的目的是对给定的文件夹中的Excel文件进行处理,计算其累积梯形积分,并将结果保存在y_int中。在这段代码中,首先使用pandas库读取Excel文件,然后将数据转换为NumPy数组。接下来,使用scipy库中的cumtrapz函数对数组进行累积梯形积分操作,并将结果乘以1000,得到y_int。
根据你提供的错误信息,看起来是在cumtrapz函数的调用中出现了类型错误。这可能是因为a数组中包含了非数值类型的数据,导致无法进行数值积分。你可以检查一下数据是否正确加载,并且数据的类型是否正确。如果数据包含非数值类型的元素,你可能需要进行一些数据清洗或转换操作,以确保cumtrapz函数可以正常工作。
另外,你在代码中注释掉了一行y_int的计算方式,可能是为了测试不同的计算方法。你可以尝试取消注释并使用这种计算方式,看看是否能够避免类型错误。如果仍然存在问题,请提供更多的错误信息或具体描述问题的情况,以便我能够帮助你解决问题。
阅读全文