import numpy as np p = np.array([[0.6,0.2,0.1,0.1],[0.2,0.5,0.2,0.1],[0.1,0.1,0.5,0.3],[0.5,0.2,0.2,0.1]]) r_1 = np.array([[1,0.6,0.4,0.2],[0.3,1,0.1,0.4],[0.4,0.3,1,0.2],[0.2,0.5,0.4,1]]) r_2 = np.array([[0,0.4,0.6,0.8],[0.7,0,0.9,0.6],[0.6,0.7,0,0.8],[0.8,0.5,0.6,0]]) amount_per_day = {} amount = np.array([500,500,500,500]) amount_per_day[0] = amount amount_per_day[1] = np.dot(np.multiply(p,r_1).transpose(),amount.transpose())#第一天单独处理 for i in range(2,21): amount_per_day[i] = np.dot(np.multiply(p,r_1).transpose(),amount_per_day[i - 1].transpose())+\ np.dot(np.multiply(p,r_2).transpose(),amount_per_day[i - 2].transpose()) amount_per_day[i] = np.array(list(map(int, amount_per_day[i][:])) ) #每次循环都取整 print(amount_per_day[20])代码解答
时间: 2024-02-28 22:52:01 浏览: 182
这段代码是一个 Python 实现的概率模型,用于计算在一段时间内某个商品的销售量。其中,矩阵 p 表示该商品在不同时间段内的销售概率;矩阵 r1 和 r2 表示该商品在不同时间段内的回报率;amount_per_day 为一个字典,记录了每天的销售量。具体实现过程如下:
1. 初始化每天的销售量为 500。
```
amount = np.array([500,500,500,500])
amount_per_day[0] = amount
```
2. 计算第一天的销售量(单独处理)。
```
amount_per_day[1] = np.dot(np.multiply(p,r_1).transpose(),amount.transpose())
```
3. 循环计算第 2~20 天的销售量。
```
for i in range(2,21):
amount_per_day[i] = np.dot(np.multiply(p,r_1).transpose(),amount_per_day[i - 1].transpose())+\
np.dot(np.multiply(p,r_2).transpose(),amount_per_day[i - 2].transpose())
amount_per_day[i] = np.array(list(map(int, amount_per_day[i][:])) )
```
4. 输出第 20 天的销售量。
```
print(amount_per_day[20])
```
注意,代码中使用了 numpy 库中的函数,如 np.array, np.dot, np.multiply, transpose 等。这些函数可以帮助我们更方便地进行矩阵计算和转置操作。同时,代码中还使用了字典(dict)来存储每天的销售量,这也是 Python 中常用的数据结构之一。
阅读全文