import random 初始化种群 population = [] for _ in range(population_size): individual = [random.randint(0, 1) for _ in range(gene_length)] population.append(individual) #其中,population_size 是种群的大小,gene_length 是基因长度。每个个体都是由 0 和 1 组成的基因序列, #通过 random.randint(0, 1) 随机生成。最后将每个个体添加到种群中。 免疫遗传算法的迭代过程 for generation in range(max_generations): # 计算适应度函数并排序种群 def fitness_function(population): expected_output = np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]) # 预期输出值 actual_output = np.array([[0.12, 0.18, 0.32], [0.38, 0.52, 0.68]]) # 实际输出值 mse = np.mean((expected_output - actual_output) ** 2, axis=1) # 均方误差 fitness_values = 1 / mse # 均方误差的倒数作为适应度值 return fitness_values for individual in population: fitness_score = calculate_fitness(individual) fitness_scores.append((individual, fitness_score)) fitness_scores.sort(key=lambda x: x[1], reverse=True) 请检查上述代码并进行修改
时间: 2024-04-11 14:27:39 浏览: 184
修改后的代码如下所示:
```python
import random
import numpy as np
# 初始化种群
population = []
for _ in range(population_size):
individual = [random.randint(0, 1) for _ in range(gene_length)]
population.append(individual)
# 其中,population_size 是种群的大小,gene_length 是基因长度。每个个体都是由 0 和 1 组成的基因序列,
# 通过 random.randint(0, 1) 随机生成。最后将每个个体添加到种群中。
# 定义适应度函数
def calculate_fitness(individual):
expected_output = np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]) # 预期输出值
actual_output = np.array([[0.12, 0.18, 0.32], [0.38, 0.52, 0.68]]) # 实际输出值
mse = np.mean((expected_output - actual_output) ** 2, axis=1) # 均方误差
fitness_score = 1 / mse # 均方误差的倒数作为适应度值
return fitness_score
# 计算适应度函数并排序种群
fitness_scores = []
for individual in population:
fitness_score = calculate_fitness(individual)
fitness_scores.append((individual, fitness_score))
fitness_scores.sort(key=lambda x: x[1], reverse=True)
# 进行其他迭代步骤...
```
在修改后的代码中,我添加了一个 `calculate_fitness` 函数来计算每个个体的适应度值。然后,对种群中的每个个体都计算适应度值,并将其存储在 `fitness_scores` 列表中。最后,使用 `sort` 函数对 `fitness_scores` 进行排序,以便将适应度值最高的个体放在前面。你可以根据实际需求进行后续的迭代步骤。
阅读全文