y=f(x1,x2,x3,x4,x5,x6,x7)=100/(|x1+1|+|x2|+|x3-1|+|x4+2|+|x5+3|+|x6-2|+|x7-3|+1),用python编写代码求解函数最小值,要求不使用numpy库,过程运用遗传算法
时间: 2024-05-23 21:07:01 浏览: 165
要使用遗传算法求解函数的最小值,可以按照以下步骤进行编写代码:
1. 定义适应度函数:根据给定的函数表达式,计算适应度函数的值。适应度函数的值越小,表示个体的适应度越高。
```python
def fitness_function(x):
x1, x2, x3, x4, x5, x6, x7 = x
y = 100 / (abs(x1 + 1) + abs(x2) + abs(x3 - 1) + abs(x4 + 2) + abs(x5 + 3) + abs(x6 - 2) + abs(x7 - 3) + 1)
return y
```
2. 初始化种群:随机生成一组个体作为初始种群。
```python
import random
def initialize_population(population_size, chromosome_length):
population = []
for _ in range(population_size):
individual = [random.uniform(-10, 10) for _ in range(chromosome_length)]
population.append(individual)
return population
```
3. 选择操作:使用轮盘赌选择算法,根据个体的适应度选择一部分个体作为下一代的父代。
```python
def selection(population, fitness_values):
total_fitness = sum(fitness_values)
probabilities = [fitness / total_fitness for fitness in fitness_values]
selected_population = []
for _ in range(len(population)):
r = random.random()
cumulative_probability = 0
for i, probability in enumerate(probabilities):
cumulative_probability += probability
if r <= cumulative_probability:
selected_population.append(population[i])
break
return selected_population
```
4. 交叉操作:使用单点交叉算法,对父代个体进行交叉操作生成子代个体。
```python
def crossover(parent1, parent2):
crossover_point = random.randint(1, len(parent1) - 1)
child1 = parent1[:crossover_point] + parent2[crossover_point:]
child2 = parent2[:crossover_point] + parent1[crossover_point:]
return child1, child2
```
5. 变异操作:对子代个体进行变异操作,增加种群的多样性。
```python
def mutation(individual, mutation_rate):
mutated_individual = individual.copy()
for i in range(len(mutated_individual)):
if random.random() < mutation_rate:
mutated_individual[i] = random.uniform(-10, 10)
return mutated_individual
```
6. 遗传算法主程序:根据上述操作,进行遗传算法的迭代过程。
```python
def genetic_algorithm(population_size, chromosome_length, generations, mutation_rate):
population = initialize_population(population_size, chromosome_length)
for _ in range(generations):
fitness_values = [fitness_function(individual) for individual in population]
selected_population = selection(population, fitness_values)
new_population = []
while len(new_population) < population_size:
parent1 = random.choice(selected_population)
parent2 = random.choice(selected_population)
child1, child2 = crossover(parent1, parent2)
mutated_child1 = mutation(child1, mutation_rate)
mutated_child2 = mutation(child2, mutation_rate)
new_population.extend([mutated_child1, mutated_child2])
population = new_population
best_individual = max(population, key=fitness_function)
best_fitness = fitness_function(best_individual)
return best_individual, best_fitness
```
7. 调用遗传算法函数并输出结果。
```python
population_size = 100
chromosome_length = 7
generations = 100
mutation_rate = 0.01
best_individual, best_fitness = genetic_algorithm(population_size, chromosome_length, generations, mutation_rate)
print("最优个体:", best_individual)
print("最优适应度:", best_fitness)
```
这样就可以使用遗传算法求解给定函数的最小值了。
阅读全文