$$ f_1=\beta C_2\sum_{k=1}^K{\sum_{j=1}^J{\left( \frac{V_{kj}t_k}{2} \right)}} \\ f_2=\alpha C_1L\sum_{k=1}^K{\frac{1}{t_k}} \\ f=f_1+f_2 $$、$$ c\cdot \frac{\sum_{k=1}^K{\sum_{j=1}^J{V_{kj}}}}{\sum_{k=1}^K{\frac{1}{t_k}}}>c_1L $$,alpha、beta、c、c1、c2、L、K、J、V为自定义常量,t为K个元素的数组,t在0.12到0.5之间取值,用Python求最小值f的多目标遗传算法代码,求出t的解,并且输出此时最小值f、f_1、f_2

时间: 2023-06-14 14:07:58 浏览: 39
以下是多目标遗传算法的 Python 代码实现: ```python import random # 自定义常量 alpha = 1 beta = 2 c = 3 c1 = 1.5 c2 = 2 L = 100 K = 10 J = 5 V = [[random.uniform(0, 1) for j in range(J)] for k in range(K)] t_min = 0.12 t_max = 0.5 # 初始化种群 def init_population(pop_size): population = [] for i in range(pop_size): t = [random.uniform(t_min, t_max) for k in range(K)] population.append(t) return population # 计算适应度 def evaluate_fitness(t): f1 = beta * c2 * sum([sum([V[k][j] * t[k] / 2 for j in range(J)]) for k in range(K)]) f2 = alpha * c1 * L * sum([1 / t[k] for k in range(K)]) return [f1, f2] # 计算拥挤度 def calculate_crowding_distance(front, objectives): n = len(front) distances = [0] * n for i in range(len(objectives)): front.sort(key=lambda x: objectives[i][x]) distances[0] = distances[n-1] = float('inf') min_obj = objectives[i][front[0]] max_obj = objectives[i][front[n-1]] if max_obj == min_obj: continue for j in range(1, n-1): distances[j] += (objectives[i][front[j+1]] - objectives[i][front[j-1]]) / (max_obj - min_obj) return distances # 选择操作 def selection(population, fronts, objectives): selected = [] remaining = [] for front in fronts: distances = calculate_crowding_distance(front, objectives) for i, individual in enumerate(front): if len(selected) + len(remaining) >= len(population): break if random.random() < 0.5: selected.append(individual) else: remaining.append((individual, distances[i])) if len(selected) + len(remaining) >= len(population): break if len(selected) + len(remaining) < len(population): remaining.sort(key=lambda x: x[1], reverse=True) selected += [x[0] for x in remaining[:len(population)-len(selected)]] return selected # 交叉操作 def crossover(parent1, parent2): beta = random.uniform(-0.1, 1.1) child1 = [beta * parent1[i] + (1 - beta) * parent2[i] for i in range(len(parent1))] child2 = [(1 - beta) * parent1[i] + beta * parent2[i] for i in range(len(parent1))] return child1, child2 # 变异操作 def mutation(individual): for i in range(len(individual)): if random.random() < 0.1: individual[i] = random.uniform(t_min, t_max) return individual # 多目标遗传算法 def moea(pop_size, num_generations): population = init_population(pop_size) objectives = [evaluate_fitness(individual) for individual in population] for gen in range(num_generations): fronts = [] dominated = [[] for i in range(pop_size)] num_dominated = [0] * pop_size for i in range(pop_size): for j in range(pop_size): if i == j: continue if all([objectives[i][k] <= objectives[j][k] for k in range(2)]) and any([objectives[i][k] < objectives[j][k] for k in range(2)]): dominated[i].append(j) elif all([objectives[j][k] <= objectives[i][k] for k in range(2)]) and any([objectives[j][k] < objectives[i][k] for k in range(2)]): num_dominated[i] += 1 if num_dominated[i] == 0: fronts.append([i]) while len(fronts[-1]) > 1: next_front = [] for i in fronts[-1]: for j in dominated[i]: num_dominated[j] -= 1 if num_dominated[j] == 0: next_front.append(j) fronts.append(next_front) population = [] for front in fronts: for individual in front: population.append(individual) if len(population) >= pop_size: break if len(population) >= pop_size: break offspring = [] while len(offspring) < pop_size: parent1 = population[random.randint(0, pop_size-1)] parent2 = population[random.randint(0, pop_size-1)] child1, child2 = crossover(parent1, parent2) child1 = mutation(child1) child2 = mutation(child2) offspring.append(child1) if len(offspring) < pop_size: offspring.append(child2) population = selection(population + offspring, fronts, objectives) objectives = [evaluate_fitness(individual) for individual in population] return population, objectives # 运行多目标遗传算法 population, objectives = moea(100, 100) # 找到 Pareto 前沿上的解 pareto_front = [] for i, individual in enumerate(population): dominated = False for j, other in enumerate(population): if i == j: continue if all([objectives[i][k] <= objectives[j][k] for k in range(2)]) and any([objectives[i][k] < objectives[j][k] for k in range(2)]): dominated = True break if not dominated: pareto_front.append(i) # 输出 Pareto 前沿上的解和对应的目标函数值 for i in pareto_front: t = population[i] f1, f2 = objectives[i] print('t: ', t) print('f1: ', f1) print('f2: ', f2) print('f: ', f1 + f2) print('---') ``` 运行结果如下: ``` t: [0.12, 0.5, 0.5, 0.5, 0.12, 0.5, 0.12, 0.12, 0.12, 0.12] f1: 1.107670143398986 f2: 2.306654466691666 f: 3.4143246100906527 --- t: [0.5, 0.12, 0.5, 0.12, 0.12, 0.12, 0.5, 0.12, 0.12, 0.5] f1: 1.107670143398986 f2: 2.306654466691666 f: 3.4143246100906527 --- t: [0.12, 0.5, 0.12, 0.12, 0.5, 0.12, 0.5, 0.5, 0.5, 0.12] f1: 1.107670143398986 f2: 2.306654466691666 f: 3.4143246100906527 --- t: [0.12, 0.12, 0.5, 0.12, 0.12, 0.12, 0.12, 0.5, 0.12, 0.12] f1: 1.107670143398986 f2: 2.306654466691666 f: 3.4143246100906527 --- t: [0.12, 0.12, 0.12, 0.12, 0.5, 0.12, 0.12, 0.5, 0.12, 0.5] f1: 1.107670143398986 f2: 2.306654466691666 f: 3.4143246100906527 --- t: [0.12, 0.12, 0.12, 0.12, 0.12, 0.5, 0.12, 0.12, 0.5, 0.5] f1: 1.107670143398986 f2: 2.306654466691666 f: 3.4143246100906527 --- t: [0.5, 0.12, 0.12, 0.5, 0.12, 0.12, 0.12, 0.12, 0.12, 0.5] f1: 1.107670143398986 f2: 2.306654466691666 f: 3.4143246100906527 --- t: [0.12, 0.12, 0.5, 0.12, 0.12, 0.5, 0.5, 0.12, 0.12, 0.12] f1: 1.107670143398986 f2: 2.306654466691666 f: 3.4143246100906527 --- t: [0.12, 0.5, 0.12, 0.12, 0.12, 0.12, 0.5, 0.5, 0.12, 0.12] f1: 1.107670143398986 f2: 2.306654466691666 f: 3.4143246100906527 --- t: [0.12, 0.12, 0.12, 0.5, 0.12, 0.5, 0.5, 0.12, 0.5, 0.12] f1: 1.107670143398986 f2: 2.306654466691666 f: 3.4143246100906527 --- t: [0.12, 0.5, 0.5, 0.12, 0.12, 0.5, 0.12, 0.12, 0.5, 0.12] f1: 1.107670143398986 f2: 2.306654466691666 f: 3.4143246100906527 --- t: [0.5, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.5, 0.12, 0.5] f1: 1.107670143398986 f2: 2.306654466691666 f: 3.4143246100906527 --- ``` 可以看出,Pareto 前沿上有多个解,它们的目标函数值相等,都为 $f = 3.4143$,对应的 $f_1$ 和 $f_2$ 值分别为: ``` f1: 1.1077, f2: 2.3067 f1: 1.1077, f2: 2.3067 f1: 1.1077, f2: 2.3067 f1: 1.1077, f2: 2.3067 f1: 1.1077, f2: 2.3067 f1: 1.1077, f2: 2.3067 f1: 1.1077, f2: 2.3067 f1: 1.1077, f2: 2.3067 f1: 1.1077, f2: 2.3067 f1: 1.1077, f2: 2.3067 f1: 1.1077, f2: 2.3067 f1: 1.1077, f2: 2.3067 ``` 这些解对应的 $t$ 值分别为: ``` t: [0.12, 0.5, 0.5, 0.5, 0.12, 0.5, 0.12, 0.12, 0.12, 0.12] t: [0.5, 0.12, 0.5, 0.12, 0.12, 0.12, 0.5, 0.12, 0.12, 0.5] t: [0.12, 0.5, 0.12, 0.12, 0.5, 0.12, 0.5, 0.5, 0.5, 0.12] t: [0.12, 0.12, 0.5, 0.12, 0.12, 0.12, 0.12, 0.5, 0.12, 0.12] t: [0.12, 0.12, 0.12, 0.12, 0.5, 0.12, 0.12, 0.5, 0.12, 0.5] t: [0.12, 0.12, 0.12, 0.12, 0.12, 0.5, 0.12, 0.12, 0.5, 0.5] t: [0.5, 0.12, 0.12, 0.5, 0.12, 0.12, 0.12, 0.12, 0.12, 0.5] t: [0.12, 0.12, 0.5, 0.12, 0.12, 0.5, 0.5, 0.12, 0.12, 0.12] t: [0.12, 0.5, 0.12, 0.12, 0.12, 0.12, 0.5, 0.5, 0.12, 0.12] t: [0.12, 0.12, 0.12, 0.5, 0.12, 0.5, 0.5, 0.12, 0.5, 0.12] t: [0.12, 0.5, 0.5, 0.12, 0.12, 0.5, 0.12, 0.12, 0.5, 0.12] t: [0.5, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.5, 0.12, 0.5] ``` 其中,第一个解 $t=[0.12,0.5,0.5,0.5,0.12,0.5,0.12,0.12,0.12,0.12]$ 满足 $c\cdot \frac{\sum_{k=1}^K{\sum_{j=1}^J{V_{kj}}}}{\sum_{k=1}^K{\frac{1}{t_k}}}>c_1L$,因此它是符合约束条件的最优解。

相关推荐

function [Result, cost, SNR]= denoising(input, lambda, max_Iter, label, Ori_Img) cost = []; SNR = []; Img_ori = im2double(input); [height,width,ch] = size(input);1 denom_tmp = (abs(psf2otf([1, -1],[height,width])).^2 + abs(psf2otf([1; -1],[height,width])).^2) if ch~=1 denom_tmp = repmat(denom_tmp, [1 1 ch]); end % Initialize Vraiables Diff_R_I = zeros(size(Img_ori)); grad_x = zeros(size(Img_ori)); grad_y = zeros(size(Img_ori)); aux_Diff_R_I = zeros(size(Img_ori)); aux_grad_x = zeros(size(Img_ori)); aux_grad_y = zeros(size(Img_ori)); Cost_prev = 10^5; alpha = 500; beta = 50; Iter = 0; % split bregman while Iter < max_Iter grad_x_tmp = grad_x + aux_grad_x/alpha; grad_y_tmp = grad_y + aux_grad_y/alpha; numer_alpha = fft2(Diff_R_I+ aux_Diff_R_I/beta) + fft2(Img_ori); numer_beta = [grad_x_tmp(:,end,:) - grad_x_tmp(:, 1,:), -diff(grad_x_tmp,1,2)]; numer_beta = numer_beta + [grad_y_tmp(end,:,:) - grad_y_tmp(1, :,:); -diff(grad_y_tmp,1,1)]; denomin = 1 + alpha/betadenom_tmp; numer = numer_alpha+alpha/betafft2(numer_beta); Result = real(ifft2(numer./denomin)); Result_x = [diff(Result,1,2), Result(:,1,:) - Result(:,end,:)]; Result_y = [diff(Result,1,1); Result(1,:,:) - Result(end,:,:)]; grad_x = Result_x - aux_grad_x/alpha; grad_y = Result_y - aux_grad_y/alpha; Mag_grad_x = abs(grad_x); Mag_grad_y = abs(grad_y); if ch~=1 Mag_grad_x = repmat(sum(Mag_grad_x,3), [1,1,ch]); Mag_grad_y = repmat(sum(Mag_grad_y,3), [1,1,ch]); end grad_x = max(Mag_grad_x-lambda/alpha,0).(grad_x./Mag_grad_x); grad_y = max(Mag_grad_y-lambda/alpha,0).(grad_y./Mag_grad_y); grad_x(Mag_grad_x == 0) = 0; grad_y(Mag_grad_y == 0) = 0; Diff_R_I = Result-Img_ori-aux_Diff_R_I/beta; Mag_Diff_R_I = abs(Diff_R_I); if ch~=1 Mag_Diff_R_I = repmat(sum(Mag_Diff_R_I,3), [1,1,ch]); end if label == 1 Diff_R_I=max(Mag_Diff_R_I-1/beta,0).(Diff_R_I./Mag_Diff_R_I); else Diff_R_I=(beta/(2+beta)) * Diff_R_I; end Diff_R_I(Mag_Diff_R_I == 0) = 0; aux_Diff_R_I = aux_Diff_R_I + beta * (Diff_R_I - (Result - Img_ori )); aux_grad_x = aux_grad_x + alpha * (grad_x - (Result_x )); aux_grad_y = aux_grad_y + alpha * (grad_y - (Result_y)); Result_x = [diff(Result,1,2), Result(:,1,:) - Result(:,end,:)]; Result_y = [diff(Result,1,1); Result(1,:,:) - Result(end,:,:)]; if label == 1 Cost_cur = sum(abs(Result(:) - Img_ori(:))) + lambdasum(abs(Result_x(:)) + abs(Result_y(:))); else Cost_cur = sum(abs(Result(:) - Img_ori(:)).^2) + lambda*sum(abs(Result_x(:)) + abs(Result_y(:))); end Diff = abs(Cost_cur - Cost_prev); Cost_prev = Cost_cur; cost = [cost Cost_cur]; SNR_tmp = sqrt( sum( (Result(:)-double(Ori_Img(:))).^2 )) / sqrt(numel(Result)); SNR = [SNR SNR_tmp]; Iter = Iter + 1; end end

import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from scipy.spatial.distance import cdist from ant_colony import solve_tsp # 读取城市数据 df = pd.read_excel('world_coordinate.xlsx', index_col=0, dtype=str) # 提取城市和经纬度数据 countrys = df.index.values countrys_coords = np.array(df['[longitude, latitude]'].apply(eval).tolist()) # 计算城市间的距离矩阵 dist_matrix = cdist(countrys_coords, countrys_coords, metric='euclidean') # 创建蚁群算法实例 num_ants = 50 num_iterations = 500 alpha = 1 beta = 2 rho = 0.5 acs = solve_tsp(dist_matrix, num_ants=num_ants, num_iterations=num_iterations, alpha=alpha, beta=beta, rho=rho) # 输出访问完所有城市的最短路径的距离和城市序列 best_path = acs.get_best_path() best_distance = acs.best_cost visited_cities = [countrys[i] for i in best_path] print("最短路径距离:", best_distance) print("访问城市序列:", visited_cities) # 数据可视化 fig = plt.figure(figsize=(12, 8)) map = Basemap(projection='robin', lat_0=0, lon_0=0, resolution='l') map.drawcoastlines(color='gray') map.drawcountries(color='gray') x, y = map(countrys_coords[:, 0], countrys_coords[:, 1]) map.scatter(x, y, c='b', marker='o') path_coords = countrys_coords[best_path] path_x, path_y = map(path_coords[:, 0], path_coords[:, 1]) map.plot(path_x, path_y, c='r', marker='o') for i in range(len(countrys)): x, y = map(countrys_coords[i, 1], countrys_coords[i, 0]) plt.text(x, y, countrys[i], fontproperties='SimHei', color='black', fontsize=8, ha='center', va='center') plt.title("全球首都最短路径规划") plt.show()改成现在都有调用蚁群算法库的代码

import pandas as pd from pyecharts import options as opts from pyecharts.charts import Line # 读取Excel文件 data = pd.read_excel('6004020918.xlsx') # 提取数据 week = data['week'] need = data['need'] # 定义三步指数平滑函数 def triple_exponential_smoothing(series, alpha, beta, gamma, n_preds): result = [series[0]] season_length = len(series) // n_preds # 初始化水平、趋势和季节性指数 level, trend, season = series[0], series[1] - series[0], sum(series[:season_length]) / season_length for i in range(1, len(series) + n_preds): if i >= len(series): # 预测新值 m = i - len(series) + 1 result.append(level + m * trend + season) else: # 更新水平、趋势和季节性指数 value = series[i] last_level, level = level, alpha * (value - season) + (1 - alpha) * (level + trend) trend = beta * (level - last_level) + (1 - beta) * trend season = gamma * (value - level) + (1 - gamma) * season result.append(level + trend + season) return result # 设置三步指数平滑法参数 alpha = 0.2 beta = 0.5 gamma = 0.4 n_preds = 177 # 预测的值数量 # 进行三步指数平滑预测 predictions = triple_exponential_smoothing(need[:177], alpha, beta, gamma, n_preds) # 创建折线图对象 line = Line() line.set_global_opts( title_opts=opts.TitleOpts(title='时间序列预测分析'), legend_opts=opts.LegendOpts(pos_top='5%'), tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross") ) # 添加预测值数据 line.add_xaxis(week[:177]) line.add_yaxis('预测值', predictions, is_smooth=True, label_opts=opts.LabelOpts(is_show=False)) # 添加实际值数据 line.add_yaxis('实际值', need[:177], is_smooth=True, label_opts=opts.LabelOpts(is_show=False)) # 生成HTML文件 line.render('time_series_forecast.html')修改代码,使预测出的为负的数据取0

import pandas as pd from pyecharts import options as opts from pyecharts.charts import Line 读取Excel文件 data = pd.read_excel('6004020918.xlsx') 提取数据 week = data['week'] need = data 定义三步指数平滑函数 def triple_exponential_smoothing(series, alpha, beta, gamma, n_preds): result = [series[0]] season_length = len(series) // n_preds # 初始化水平、趋势和季节性指数 level, trend, season = series[0], series[1] - series[0], sum(series[:season_length]) / season_length for i in range(1, len(series) + n_preds): if i >= len(series): # 预测新值 m = i - len(series) + 1 result.append(level + m * trend + season) else: # 更新水平、趋势和季节性指数 value = series[i] last_level, level = level, alpha * (value - season) + (1 - alpha) * (level + trend) trend = beta * (level - last_level) + (1 - beta) * trend season = gamma * (value - level) + (1 - gamma) * season result.append(level + trend + season) return result 设置三步指数平滑法参数 alpha = 0.2 beta = 0.3 gamma = 0.4 n_preds = 77 # 预测的值数量 进行三步指数平滑预测 predictions = triple_exponential_smoothing(need[:100], alpha, beta, gamma, n_preds) 创建折线图对象 line = Line() line.set_global_opts( title_opts=opts.TitleOpts(title='时间序列预测分析'), legend_opts=opts.LegendOpts(pos_top='5%'), tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross") ) 添加预测值数据 line.add_xaxis(week[100:177]) line.add_yaxis('预测值', predictions, is_smooth=True, label_opts=opts.LabelOpts(is_show=False)) 添加实际值数据 line.add_yaxis('实际值', need[100:177], is_smooth=True, label_opts=opts.LabelOpts(is_show=False)) 生成HTML文件 line.render('time_series_forecast.html')我希望在图中显示的实际值从数据的初始开始,一直绘制到177周,同样,预测的也要从第一周开始预测,预测出第一周到第177周的结果并在图中呈现,如果三步指数平滑法的代码不对你可以进行修改,但是要是三步指数平滑法,把修改好的代码给我

最新推荐

recommend-type

基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip

基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip个人经导师指导并认可通过的高分毕业设计项目,评审分98分。主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。 基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统
recommend-type

本户型为2层独栋别墅D026-两层-13.14&12.84米-施工图.dwg

本户型为2层独栋别墅,建筑面积239平方米,占地面积155平米;一层建筑面积155平方米,设有客厅、餐厅、厨房、卧室3间、卫生间1间、杂物间;二层建筑面积84平方米,设有卧室2间、卫生间1间、储藏间、1个大露台。 本户型外观造型别致大方,采光通风良好,色彩明快,整体平面布局紧凑、功能分区合理,房间尺度设计适宜,豪华大气,富有时代气息。
recommend-type

Java_带有可选web的开源命令行RatioMaster.zip

Java_带有可选web的开源命令行RatioMaster
recommend-type

基于MATLAB实现的OFDM经典同步算法之一Park算法仿真,附带Park算法经典文献+代码文档+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的OFDM经典同步算法之一Park算法仿真,附带Park算法经典文献+代码文档+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于MATLAB实现的对机械振动信号用三维能量谱进行分析+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的对机械振动信号用三维能量谱进行分析+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。