$$ f=\alpha C_1L\sum_{k=1}^K{\frac{1}{t_k}}+\beta C_2\sum_{k=1}^K{\sum_{j=1}^J{\left( \frac{V_{kj}t_k}{2} \right)}} $$用Python求最小值t多目标遗传算法代码
时间: 2023-06-15 12:06:34 浏览: 73
以下是使用Python实现多目标遗传算法求解上述问题的代码:
```python
import random
import numpy as np
# 定义目标函数
def objective_function(t, alpha, beta, C1, L, C2, V):
f1 = alpha * C1 * L * np.sum(1 / t)
f2 = beta * C2 * np.sum(V * t / 2)
return (f1, f2)
# 定义种群初始化函数
def initialize_population(pop_size, chrom_length):
population = []
for i in range(pop_size):
chromosome = [random.uniform(0, 10) for j in range(chrom_length)]
population.append(chromosome)
return population
# 定义交叉函数
def crossover(parent1, parent2, prob):
if random.random() < prob:
child1 = []
child2 = []
for i in range(len(parent1)):
if random.random() < 0.5:
child1.append(parent1[i])
child2.append(parent2[i])
else:
child1.append(parent2[i])
child2.append(parent1[i])
return (child1, child2)
else:
return (parent1, parent2)
# 定义变异函数
def mutate(chromosome, prob):
mutated_chromosome = []
for i in range(len(chromosome)):
if random.random() < prob:
mutated_chromosome.append(random.uniform(0, 10))
else:
mutated_chromosome.append(chromosome[i])
return mutated_chromosome
# 定义非支配排序函数
def non_dominated_sorting(population, objectives):
fronts = [[]]
n = [0] * len(population)
ranks = [0] * len(population)
S = [[] for i in range(len(population))]
for p in range(len(population)):
S[p] = []
n[p] = 0
for q in range(len(population)):
if dominates(population[p], population[q], objectives):
S[p].append(q)
elif dominates(population[q], population[p], objectives):
n[p] += 1
if n[p] == 0:
ranks[p] = 0
fronts[0].append(p)
i = 0
while len(fronts[i]) > 0:
next_front = []
for p in fronts[i]:
for q in S[p]:
n[q] -= 1
if n[q] == 0:
ranks[q] = i + 1
next_front.append(q)
i += 1
fronts.append(next_front)
return fronts[:-1]
# 定义支配函数
def dominates(chromosome1, chromosome2, objectives):
dominates = False
for i in range(len(objectives)):
if objectives[i](chromosome1) > objectives[i](chromosome2):
return False
elif objectives[i](chromosome1) < objectives[i](chromosome2):
dominates = True
return dominates
# 定义选择函数
def selection(population, objectives, pop_size):
fronts = non_dominated_sorting(population, objectives)
selection = []
for front in fronts:
if len(selection) + len(front) <= pop_size:
selection += front
else:
remaining_space = pop_size - len(selection)
distances = crowding_distance(population, objectives, front)
sorted_indices = sorted(range(len(front)), key=lambda k: -distances[k])
for i in range(remaining_space):
selection.append(front[sorted_indices[i]])
break
return [population[i] for i in selection]
# 定义拥挤距离函数
def crowding_distance(population, objectives, front):
distances = [0] * len(front)
for i in range(len(objectives)):
sorted_indices = sorted(range(len(front)), key=lambda k: objectives[i](population[front[k]]))
distances[sorted_indices[0]] = float('inf')
distances[sorted_indices[-1]] = float('inf')
for j in range(1, len(front) - 1):
distances[sorted_indices[j]] += (objectives[i](population[front[j+1]]) - objectives[i](population[front[j-1]])) / (objectives[i](population[front[-1]]) - objectives[i](population[front[0]]))
return distances
# 定义多目标遗传算法函数
def multi_objective_genetic_algorithm(pop_size, chrom_length, num_generations, alpha, beta, C1, L, C2, V, crossover_prob=0.8, mutation_prob=0.2):
population = initialize_population(pop_size, chrom_length)
objectives = [lambda chromosome: objective_function(chromosome, alpha, beta, C1, L, C2, V)[i] for i in range(2)]
for gen in range(num_generations):
offspring_population = []
while len(offspring_population) < pop_size:
parent1, parent2 = random.sample(population, 2)
child1, child2 = crossover(parent1, parent2, crossover_prob)
child1 = mutate(child1, mutation_prob)
child2 = mutate(child2, mutation_prob)
offspring_population.append(child1)
if len(offspring_population) < pop_size:
offspring_population.append(child2)
population += offspring_population
population = selection(population, objectives, pop_size)
return population
# 设置参数并执行算法
pop_size = 100
chrom_length = 10
num_generations = 50
alpha = 1
beta = 1
C1 = 1
L = 1
C2 = 1
V = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
population = multi_objective_genetic_algorithm(pop_size, chrom_length, num_generations, alpha, beta, C1, L, C2, V)
# 输出结果
for chromosome in population:
print(chromosome, objective_function(chromosome, alpha, beta, C1, L, C2, V))
```
阅读全文