遗传算法流水线调度问题python
时间: 2023-09-03 21:05:41 浏览: 180
遗传算法可以用于解决流水线调度问题。下面是一个用Python实现的基本遗传算法流水线调度问题的示例代码:
```python
import random
# 定义工件和机器的数量
num_jobs = 5
num_machines = 3
# 生成随机的流水线
def generate_pipeline(num_jobs, num_machines):
pipeline = []
for _ in range(num_jobs):
operations = [random.randint(1, num_machines) for _ in range(num_machines)]
pipeline.append(operations)
return pipeline
# 计算每个工件的完成时间
def calculate_completion_time(pipeline):
completion_times = [0] * num_machines
for operations in pipeline:
for machine, operation_time in enumerate(operations):
completion_times[machine] += operation_time
return max(completion_times)
# 生成初始种群
def generate_population(population_size):
population = []
for _ in range(population_size):
individual = generate_pipeline(num_jobs, num_machines)
population.append(individual)
return population
# 评估种群中每个个体的适应度
def evaluate_population(population):
fitness_scores = []
for individual in population:
completion_time = calculate_completion_time(individual)
fitness_scores.append(1 / completion_time) # 适应度为完成时间的倒数,越小越好
return fitness_scores
# 选择操作:轮盘赌选择法
def roulette_wheel_selection(population, fitness_scores):
total_fitness = sum(fitness_scores)
probabilities = [score / total_fitness for score in fitness_scores]
selected_index = random.choices(range(len(population)), probabilities)[0]
return population[selected_index]
# 交叉操作:单点交叉
def crossover(parent1, parent2):
crossover_point = random.randint(1, num_jobs - 1)
child1 = parent1[:crossover_point] + parent2[crossover_point:]
child2 = parent2[:crossover_point] + parent1[crossover_point:]
return child1, child2
# 变异操作:随机变异
def mutate(individual):
for i in range(num_jobs):
if random.random() < mutation_rate:
individual[i] = [random.randint(1, num_machines) for _ in range(num_machines)]
return individual
# 遗传算法主函数
def genetic_algorithm(population_size, num_generations, mutation_rate):
population = generate_population(population_size)
for generation in range(num_generations):
fitness_scores = evaluate_population(population)
new_population = []
for _ in range(population_size // 2):
parent1 = roulette_wheel_selection(population, fitness_scores)
parent2 = roulette_wheel_selection(population, fitness_scores)
child1, child2 = crossover(parent1, parent2)
new_population.append(mutate(child1))
new_population.append(mutate(child2))
population = new_population
best_individual = max(population, key=lambda x: 1 / calculate_completion_time(x))
best_completion_time = calculate_completion_time(best_individual)
return best_individual, best_completion_time
# 设置参数并运行遗传算法
population_size = 100
num_generations = 50
mutation_rate = 0.01
best_individual, best_completion_time = genetic_algorithm(population_size, num_generations, mutation_rate)
print("Best individual:", best_individual)
print("Best completion time:", best_completion_time)
```
请注意,这只是一个简化的示例代码,实际应用中可能还需要考虑更多的约束和优化方法。希望对你有帮助!如果有任何问题,请随时提问。
阅读全文