帮我看一下这段代码哪里有问题,怎么修改?import pandas as pd import numpy as np pd.set_option('display.max_columns', None)#所有列 pd.set_option('display.max_rows', None)#所有行 data=pd.read_excel('半监督数据.xlsx') datas = pd.DataFrame(data)dataset=datas(labeled_size=0.3,test_size=0.1,stratified=False,shuffle=True,random_state=0, default_transforms=True)
时间: 2023-06-26 20:06:42 浏览: 175
这段代码存在几个问题:
1. 缺少导入 `sklearn.model_selection.train_test_split` 的语句,这个函数用于划分数据集。
2. `datas(labeled_size=0.3,test_size=0.1,stratified=False,shuffle=True,random_state=0,default_transforms=True)` 中的 `labeled_size` 和 `test_size` 参数应该使用 `train_size` 和 `test_size` 代替。
3. `datas` 是一个 DataFrame 对象,应该使用 `train_test_split` 函数对其进行划分,而不是将其作为参数传递给 `dataset`。
修改后的代码如下:
```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
pd.set_option('display.max_columns', None) # 所有列
pd.set_option('display.max_rows', None) # 所有行
data = pd.read_excel('半监督数据.xlsx')
X = data.drop(columns=['label']) # 特征矩阵
y = data['label'] # 标签列
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, stratify=None, shuffle=True, random_state=0)
# 划分带标签数据集
labeled_size = 0.3
n_labeled = int(labeled_size * len(X_train))
indices = np.arange(len(X_train))
unlabeled_indices = np.delete(indices, y_train.index[:n_labeled])
X_unlabeled = X_train.iloc[unlabeled_indices]
y_unlabeled = y_train.iloc[unlabeled_indices]
X_labeled = X_train.iloc[y_train.index[:n_labeled]]
y_labeled = y_train.iloc[y_train.index[:n_labeled]]
```
这里将数据集划分为带标签数据集和无标签数据集,只对带标签数据集进行训练。如果需要同时使用带标签数据集和无标签数据集进行训练,可以使用半监督学习的算法,例如标签传播算法和自训练算法。
阅读全文