struct msg msg; msg.module_id = 0x1; msg.cmd_id = 0x2; msg.cmd_subid = 0x1; msg.complete = 0; memcpy(&tx_buffer[tail], &msg, sizeof(struct msg)); &msg = &tx_buffer[tail];

时间: 2024-03-20 21:41:38 浏览: 26
这段代码存在语法错误,`&msg = &tx_buffer[tail]` 这一语句是非法的,因为 `&msg` 是一个取地址的操作,它的值是一个指向 `struct msg` 类型的指针,而指针变量是不能被赋值的,因此这一语句会导致编译错误。 如果想让 `&msg` 指向 `tx_buffer[tail]` 的地址,可以使用指针变量来实现,示例代码如下: ```c struct msg msg; msg.module_id = 0x1; msg.cmd_id = 0x2; msg.cmd_subid = 0x1; msg.complete = 0; memcpy(&tx_buffer[tail], &msg, sizeof(struct msg)); struct msg *p_msg = (struct msg *)&tx_buffer[tail]; ``` 在上述代码中,首先使用 `memcpy` 函数将 `msg` 结构体中的数据复制到 `tx_buffer` 数组中指定的位置,然后使用一个指向 `struct msg` 类型的指针变量 `p_msg` 来指向 `tx_buffer[tail]` 所在的地址。这样,通过 `p_msg` 就可以访问到 `tx_buffer[tail]` 中存储的数据了。
相关问题

static unsigned int phytuart_msg_cmd_set_txim(unsigned int im, unsigned int txim , struct pokemon_uart_port *pup) { if (txim == 0) { im &= ~REG_IMSC_TXIM; pokemon_uart_write(im, pup, REG_IMSC); } else{ im |= REG_IMSC_TXIM; pokemon_uart_write(im, pup, REG_IMSC); } return im; } static int phytuart_cmd_handler(struct pokemon_uart_port *pup, struct ring_buffer *rbuf){ struct msg rsv_msg; unsigned int data1, data2, data3; unsigned int ret; rsv_msg = ring_buffer_out(pup->tx_buf); if (rsv_msg.module_id != 0x1) printk(KERN_INFO "AP_MSG1: completed!\n"); return -1; else{ switch (rsv_msg.cmd_id){ case 0x1: switch (rsv_msg.cmd_subid){ case 0x1: data1 = ((int)rsv_msg.data[0] << 24 | (int)rsv_msg.data[1] << 16 | (int)rsv_msg.data[2] << 8 | (int)rsv_msg.data[3]); data2 = ((int)rsv_msg.data[4] << 24 | (int)rsv_msg.data[5] << 16 | (int)rsv_msg.data[6] << 8 | (int)rsv_msg.data[7]); ret = phytuart_msg_cmd_set_txim(data1, data2, pup); rsv_msg.complete = 1; rsv_msg.data[8] = (char)(ret >> 24); rsv_msg.data[9] = (char)(0xff & (ret >> 16)); rsv_msg.data[10] = (char)(0xff & (ret >> 8)); rsv_msg.data[11] = (char)(0xff & ret); break; default: break; } default: break; } } return 0; } 审查一下这段Linux内核驱动代码有无逻辑和格式错误

这段代码的逻辑是正确的,没有明显的错误。但是,在 phytuart_cmd_handler 函数中,if 语句的代码块需要加上花括号,以确保逻辑正确。另外,建议将代码缩进调整一下,使其更易读。 下面是格式和缩进调整后的代码: ``` static unsigned int phytuart_msg_cmd_set_txim(unsigned int im, unsigned int txim, struct pokemon_uart_port *pup) { if (txim == 0) { im &= ~REG_IMSC_TXIM; pokemon_uart_write(im, pup, REG_IMSC); } else { im |= REG_IMSC_TXIM; pokemon_uart_write(im, pup, REG_IMSC); } return im; } static int phytuart_cmd_handler(struct pokemon_uart_port *pup, struct ring_buffer *rbuf) { struct msg rsv_msg; unsigned int data1, data2, data3; unsigned int ret; rsv_msg = ring_buffer_out(pup->tx_buf); if (rsv_msg.module_id != 0x1) { printk(KERN_INFO "AP_MSG1: completed!\n"); return -1; } else { switch (rsv_msg.cmd_id) { case 0x1: switch (rsv_msg.cmd_subid) { case 0x1: data1 = ((int)rsv_msg.data[0] << 24 | (int)rsv_msg.data[1] << 16 | (int)rsv_msg.data[2] << 8 | (int)rsv_msg.data[3]); data2 = ((int)rsv_msg.data[4] << 24 | (int)rsv_msg.data[5] << 16 | (int)rsv_msg.data[6] << 8 | (int)rsv_msg.data[7]); ret = phytuart_msg_cmd_set_txim(data1, data2, pup); rsv_msg.complete = 1; rsv_msg.data[8] = (char)(ret >> 24); rsv_msg.data[9] = (char)(0xff & (ret >> 16)); rsv_msg.data[10] = (char)(0xff & (ret >> 8)); rsv_msg.data[11] = (char)(0xff & ret); break; default: break; } default: break; } } return 0; } ```

在Linux内核驱动中,构建一个存放如下结构体的数组: struct msg { u16 module_id; u16 cmd_id; u16 cmd_subid; u16 complete; u8 data[128]; }; 请给出操作这个数组的函数,包括初始化,入数组,出数组,注销等。 再构建两个函数,在函数中使用操作数组的函数完成如下功能: 函数一初始化msg结构体,将msg所有成员设置为常数(其中msg的complete成员设置为0),向msg的data数组内放置两个unsigned int 类型数据a和b,之后将msg结构体放入数组中,触发函数二,使用usleep_range()函数等待函数二将msg的complete成员设置为1后,获取函数二放入的c并还原成unsigned int 类型,之后清除msg。 函数二需要从数组中取出msg,并进行解析:判断msg的module_id是否为0x1,如果不是,报错,如果是0x1,使用switch函数解析msg的cmd_id,再根据不同的cmd_id解析cmd_subid,具体解析内容为,取出在函数一向msg的data数组中放入的a和b,还原成unsigned int 类型数据,再将一个unsigned int 类型数据c=1000,放到msg的data数组内,之后,再将msg中的complete置1;使用移位的方式放置和还原unsigned int类型数据。

下面是操作数组的函数实现: ```c #define MSG_ARRAY_SIZE 10 struct msg msg_array[MSG_ARRAY_SIZE]; int msg_array_head = 0; int msg_array_tail = 0; // 初始化数组 void msg_array_init(void) { memset(msg_array, 0, sizeof(msg_array)); msg_array_head = msg_array_tail = 0; } // 入数组 int msg_array_push(struct msg *msg) { int next_tail = (msg_array_tail + 1) % MSG_ARRAY_SIZE; if (next_tail == msg_array_head) { return -1; // 数组已满 } memcpy(&msg_array[msg_array_tail], msg, sizeof(struct msg)); msg_array_tail = next_tail; return 0; } // 出数组 int msg_array_pop(struct msg *msg) { if (msg_array_head == msg_array_tail) { return -1; // 数组为空 } memcpy(msg, &msg_array[msg_array_head], sizeof(struct msg)); msg_array_head = (msg_array_head + 1) % MSG_ARRAY_SIZE; return 0; } // 注销数组 void msg_array_cleanup(void) { memset(msg_array, 0, sizeof(msg_array)); msg_array_head = msg_array_tail = 0; } ``` 下面是函数一: ```c void func_one(void) { struct msg msg; // 初始化msg结构体 memset(&msg, 0, sizeof(struct msg)); msg.module_id = 0x1; msg.cmd_id = 0x2; msg.cmd_subid = 0x3; msg.complete = 0; *(unsigned int *)msg.data = 0x12345678; *(unsigned int *)(msg.data + sizeof(unsigned int)) = 0x87654321; // 将msg结构体放入数组中 if (msg_array_push(&msg) != 0) { printk(KERN_ERR "msg array full\n"); return; } // 等待msg结构体被处理 while (msg.complete == 0) { usleep_range(1000, 2000); } // 获取函数二放入的c并还原成unsigned int类型 unsigned int c = *(unsigned int *)(msg.data + 2 * sizeof(unsigned int)); // 清除msg结构体 memset(&msg, 0, sizeof(struct msg)); } ``` 下面是函数二: ```c void func_two(void) { struct msg msg; // 从数组中取出msg结构体 if (msg_array_pop(&msg) != 0) { return; } // 判断module_id是否为0x1 if (msg.module_id != 0x1) { printk(KERN_ERR "msg module_id error\n"); return; } // 解析cmd_id switch (msg.cmd_id) { case 0x2: // 解析cmd_subid switch (msg.cmd_subid) { case 0x3: // 取出a和b并还原成unsigned int类型 unsigned int a = *(unsigned int *)msg.data; unsigned int b = *(unsigned int *)(msg.data + sizeof(unsigned int)); // 将c放入msg的data数组内 *(unsigned int *)(msg.data + 2 * sizeof(unsigned int)) = 1000; // 将msg的complete置1 msg.complete = 1; // 使用移位的方式放置和还原unsigned int类型数据 a = a << 16 | a >> 16; b = b << 16 | b >> 16; c = c << 16 | c >> 16; break; default: printk(KERN_ERR "msg cmd_subid error\n"); return; } break; default: printk(KERN_ERR "msg cmd_id error\n"); return; } // 将处理后的msg结构体放回数组中 if (msg_array_push(&msg) != 0) { printk(KERN_ERR "msg array full\n"); return; } } ```

相关推荐

最新推荐

recommend-type

08内墙涂料工程.doc

08内墙涂料工程
recommend-type

Springboot759的幼儿园管理系统.mp4

项目运行视频
recommend-type

PHP校园二手信息网站的设计与开发(源代码+论文).rar

php,PHP校园二手信息网站的设计与开发(源代码+论文)
recommend-type

三层别墅图纸编号D101-三层-10.10&18.60米-施工图.dwg

三层别墅图纸编号D101-三层-10.10&18.60米-施工图.dwg
recommend-type

pyzmq-23.0.0b2-cp37-cp37m-musllinux_1_1_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像处理算法宝典:从理论到实战

![MATLAB图像处理算法宝典:从理论到实战](https://img-blog.csdnimg.cn/20200717112736401.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2d1emhhbzk5MDE=,size_16,color_FFFFFF,t_70) # 1. MATLAB图像处理基础理论 MATLAB图像处理是一种利用MATLAB编程语言进行图像处理的强大工具。它提供了丰富的函数和工具箱,用于图像获取、增强、分
recommend-type

matlab中1/x的非线性规划

在MATLAB中,可以使用非线性规划函数(`fmincon`)来优化一个包含1/x的非线性目标函数。下面是一个简单的例子: ```matlab % 定义目标函数 fun = @(x) 1/x; % 定义约束函数(这里没有约束) nonlcon = []; % 定义初始点 x0 = 1; % 定义优化选项 options = optimoptions('fmincon', 'Display', 'iter'); % 进行非线性规划 [x, fval] = fmincon(fun, x0, [], [], [], [], [], [], nonlcon, options); ``` 在
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。